1
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
Cai CY, Chen SJ, Merchant RR, Kanda Y, Qin T. C3 Selective Hydroxylation of Pyridines via Photochemical Valence Isomerization of Pyridine N-Oxides. J Am Chem Soc 2024; 146:24257-24264. [PMID: 39172734 DOI: 10.1021/jacs.4c10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The C-H hydroxylation of the pyridine C3 position is a highly desirable transformation but remains a great challenge due to the inherent electronic properties of this heterocycle core which bring difficulties in chemical reactivity and regioselectivity. Herein we present an efficient method for formal C3 selective hydroxylation of pyridines via photochemical valence isomerization of pyridine N-oxides. This metal-free transformation features operational simplicity and compatibility with a diverse array of functional groups, and the resulting hydroxylated products are amenable to further elaboration to synthetically useful building blocks. The synthetic utility of this strategy is further demonstrated in the effective late-stage functionalization of pyridine-containing medicinally relevant molecules and versatile derivatizations of 3-pyridinols.
Collapse
Affiliation(s)
- Chen-Yan Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yuzuru Kanda
- Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
3
|
Kerpa S, Schulze VR, Holzapfel M, Cvancar L, Fischer M, Maison W. Decoration of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) with N-oxides increases the T 1 relaxivity of Gd-complexes. ChemistryOpen 2024; 13:e202300298. [PMID: 38224205 PMCID: PMC11230940 DOI: 10.1002/open.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
High complex stability and longitudinal relaxivity of Gd-based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+-complexes of the well-known chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA-NOx, a DOTA derivative with four N-oxide functionalities via "click" functionalization of the tetraazide DOTAZA. The resulting complexes Gd-DOTA-NOx and Eu-DOTA-NOx are stable compounds in aqueous solution. NMR-spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd-DOTA-NOx was found to be r1=7.7 mm-1 s-1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N-oxide groups. Moreover, Gd-DOTA-NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA-based GBCAs.
Collapse
Affiliation(s)
- Svenja Kerpa
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Verena R Schulze
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Lina Cvancar
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Wolfgang Maison
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
4
|
Cao Q, Diefenbach M, Maguire C, Krewald V, Muldoon MJ, Hintermair U. Water co-catalysis in aerobic olefin epoxidation mediated by ruthenium oxo complexes. Chem Sci 2024; 15:3104-3115. [PMID: 38425537 PMCID: PMC10901482 DOI: 10.1039/d3sc05516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
We report the development of a versatile Ru-porphyrin catalyst system which performs the aerobic epoxidation of aromatic and aliphatic (internal) alkenes under mild conditions, with product yields of up to 95% and turnover numbers (TON) up to 300. Water is shown to play a crucial role in the reaction, significantly increasing catalyst efficiency and substrate scope. Detailed mechanistic investigations employing both computational studies and a range of experimental techniques revealed that water activates the RuVI di-oxo complex for alkene epoxidation via hydrogen bonding, stabilises the RuIV mono-oxo intermediate, and is involved in the regeneration of the RuVI di-oxo complex leading to oxygen atom exchange. Distinct kinetics are obtained in the presence of water, and side reactions involved in catalyst deactivation have been identified.
Collapse
Affiliation(s)
- Qun Cao
- School of Chemistry and Chemical Engineering, Queen's University Belfast Northern Ireland UK
- Dynamic Reaction Monitoring Facility, Institute for Sustainability, University of Bath UK
| | - Martin Diefenbach
- Theoretical Chemistry, Department of Chemistry, Technische Universität Darmstadt Germany
| | - Calum Maguire
- School of Chemistry and Chemical Engineering, Queen's University Belfast Northern Ireland UK
| | - Vera Krewald
- Theoretical Chemistry, Department of Chemistry, Technische Universität Darmstadt Germany
| | - Mark J Muldoon
- School of Chemistry and Chemical Engineering, Queen's University Belfast Northern Ireland UK
| | - Ulrich Hintermair
- Dynamic Reaction Monitoring Facility, Institute for Sustainability, University of Bath UK
| |
Collapse
|
5
|
Xu J, Li Y, Zhu X, Lv S, Xu Y, Cheng T, Liu G, Liu R. Pyridinium-Masked Enol as a Precursor for Constructing Alpha-Fluoromethyl Ketones. Org Lett 2023; 25:6211-6216. [PMID: 37584477 DOI: 10.1021/acs.orglett.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
We present herein a pyridinium-masked enol as a versatile platform to produce ketones bearing tri-, di-, and monofluoromethyl in the presence of [Ir(dF(Me)ppy)]2(dtbbpy)]PF6 under blue light (455 nm) irradiation. By simply changing the F-source, α-trifluoromethyl ketones, α-difluoromethyl ketones, and α-monofluoromethyl ketones could be easily prepared in moderate to excellent yields in one step, making it a practical tool for the synthesis of fluorine-containing ketones. In addition, the pyridinium-masked enol could also be extended to the synthesis of sulfonyl ketones. The findings of the present protocol contribute to the arsenal of fluorine chemistry and might have potential applications in the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Jijun Xu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Yi Li
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Xuanyu Zhu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Shisong Lv
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Yiming Xu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Tanyu Cheng
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Guohua Liu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Rui Liu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| |
Collapse
|
6
|
Wang B, Ascenzi Pettenuzzo C, Singh J, Mccabe GE, Clark L, Young R, Pu J, Deng Y. Photoinduced Site-Selective Functionalization of Aliphatic C–H Bonds by Pyridine N-oxide Based HAT Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Cristina Ascenzi Pettenuzzo
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Gavin E. Mccabe
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Logan Clark
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Ryan Young
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Singh J, Patel RI, Sharma A. Visible‐Light‐Mediated C‐2 Functionalization and Deoxygenative Strategies in Heterocyclic
N
‐Oxides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Roshan I. Patel
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
8
|
Abstract
The oxidation of hydrocarbons of different structures under the same conditions is an important stage in the study of the chemical properties of both the hydrocarbons themselves and the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethylglyoxime (Butane-2,3-dione dioxime), at 50 °C under the same or similar conditions, we oxidized eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic. To compare the composition of the oxidation products of these hydrocarbons, we introduced a new quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds and products. It is shown that component X, which determines the mechanism of oxidation of hydrocarbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.
Collapse
|
9
|
Basistyi VS, Frederich JH. Pyridazine N-Oxides as Photoactivatable Surrogates for Reactive Oxygen Species. Org Lett 2022; 24:1907-1912. [PMID: 35262355 PMCID: PMC10559729 DOI: 10.1021/acs.orglett.2c00227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A method for the photoinduced evolution of atomic oxygen from pyridazine N-oxides was developed. This underexplored oxygen allotrope mediates arene C-H oxidation within complex, polyfunctional molecules. A water-soluble pyridazine N-oxide was also developed and shown to promote photoinduced DNA cleavage in aqueous solution. Taken together, these studies highlight the utility of pyridazine N-oxides as photoactivatable O(3P) precursors for applications in organic synthesis and chemical biology.
Collapse
Affiliation(s)
- Vitalii S Basistyi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Vo NT, Herrero C, Guillot R, Inceoglu T, Leibl W, Clémancey M, Dubourdeaux P, Blondin G, Aukauloo A, Sircoglou M. Intercepting a transient non-hemic pyridine N-oxide Fe(III) species involved in OAT reactions. Chem Commun (Camb) 2021; 57:12836-12839. [PMID: 34787138 DOI: 10.1039/d1cc04521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of bioinspired OAT catalysis, we developed a tetradentate dipyrrinpyridine ligand, a hybrid of hemic and non-hemic models. The catalytic activity of the iron(III) derivative was investigated in the presence of iodosylbenzene. Unexpectedly, MS, EPR, Mössbauer, UV-visible and FTIR spectroscopic signatures supported by DFT calculations provide convincing evidence for the involvement of a relevant FeIII-O-NPy active intermediate.
Collapse
Affiliation(s)
- Nhat Tam Vo
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Christian Herrero
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Tanya Inceoglu
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay, 1, UMR 9198, 9119, Gif-sur-Yvette, France
| | - Martin Clémancey
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, Grenoble F-38000, France
| | - Patrick Dubourdeaux
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, Grenoble F-38000, France
| | - Geneviève Blondin
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, Grenoble F-38000, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France. .,Institute for integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay, 1, UMR 9198, 9119, Gif-sur-Yvette, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| |
Collapse
|
11
|
Recent Synthetic Efforts towards High Energy Density Materials: How to Design High-Performance Energetic Structures? FIREPHYSCHEM 2021. [DOI: 10.1016/j.fpc.2021.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Doiuchi D, Uchida T. Catalytic Highly Regioselective C-H Oxygenation Using Water as the Oxygen Source: Preparation of 17O/ 18O-Isotope-Labeled Compounds. Org Lett 2021; 23:7301-7305. [PMID: 34494843 DOI: 10.1021/acs.orglett.1c02812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We found that the oxygen atom of water is activated to iodosylbenzene derivatives via reversible hydrolysis of PhI(OOCR)2 and can be used to the oxygen source for ruthenium(bpga)-catalyzed site-selective C-H oxygenation. Ru(bpga)/PhI(OOCR)2/H2O system, sterically less bulky methinic and methylenic C-H bonds in various compounds can be converted to desired oxygen functional groups in a site-selective manner. Using this method, oxygen-isotope labeled compounds such as d-[3-17O/18O]-mannose can be prepared in a multigram scale.
Collapse
Affiliation(s)
- Daiki Doiuchi
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuya Uchida
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Roy S, Kumar G, Chatterjee I. Photoinduced Diverse Reactivity of Diazo Compounds with Nitrosoarenes. Org Lett 2021; 23:6709-6713. [PMID: 34474577 DOI: 10.1021/acs.orglett.1c02279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A diverse reactivity of diazo compounds with nitrosoarene in an oxygen-transfer process and a formal [2 + 2] cycloaddition is reported. Nitosoarene has been exploited as a mild oxygen source to oxidize an in situ generated carbene intermediate under visible-light irradiation. UV-light-mediated in situ generated ketenes react with nitosoarenes to deliver oxazetidine derivatives. These operationally simple processes exemplify a transition-metal-free and catalyst-free protocol to give structurally diverse α-ketoesters or oxazetidines.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Gourav Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
14
|
Abstract
On the basis of earlier results with furan and thiophene derivatives of benzobicyclo[3.2.1]octadiene, photocatalytic oxygenation of novel furo- and thieno heterostilbenes with water-soluble manganese(III) porphyrins offered suitable possibilities to study their reactivities and reaction pathways depending on the heteroatom and the catalyst charge. The experiments were carried out in two reactors types (batch and microflow) to investigate the geometric effects. NMR spectroscopy, GC, and UPLC/MS analyses were applied for identification and quantification of the products. As our results indicated, the 2-thienyl and the common p-tolyl groups in the starting compounds remained intact due to their stronger aromaticity. Hence, the thieno derivative underwent oxygenation only at the open-chain part of the molecule, and the rates of its reactions were much lower than those of the furyl analogue. The less stable furan ring was easily oxygenated, its products with highest ratios were 2-furanon derivatives. Epoxide formation occurred at the open-chain parts of both substrates preferably by the anionic catalyst. Nevertheless, the conversion rates of the substrates were higher with the cationic porphyrin, according to electrophilic attacks by photogenerated Mn(V)=O species. Additionally, the reactions were significantly faster in microflow reactors due to the more favorable circumstances of mass transfer, diffusion, and light penetration.
Collapse
|
15
|
Ashraf MA, Liu Z, Li C, Zhang D. Recent advances in catalytic silylation of hydroxyl‐bearing compounds: A green technique for protection of alcohols using Si–O bond formations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry Henan Agricultural University Zhengzhou 450002 China
- School of Environmental Studies China University of Geosciences Wuhan 430074 China
| | - Zhenling Liu
- School of Management Henan University of Technology Zhengzhou 450001 China
| | - Cheng Li
- School of Forestry Henan Agricultural University Zhengzhou 450002 China
| | - Dangquan Zhang
- School of Forestry Henan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
16
|
Toplak M, Matthews A, Teufel R. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases. Arch Biochem Biophys 2020; 698:108732. [PMID: 33358998 DOI: 10.1016/j.abb.2020.108732] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitous flavoenzymes commonly catalyze redox chemistry such as the monooxygenation of organic substrates and are both widely utilized in nature (e.g., in primary and secondary metabolism) and of significant industrial interest. In this work, we highlight the structural and mechanistic characteristics of the distinct types of flavoprotein monooxygenases (FPMOs). We thereby illustrate the chemical basis of FPMO catalysis, which enables reactions such as (aromatic) hydroxylation, epoxidation, (de)halogenation, heteroatom oxygenation, Baeyer-Villiger oxidation, α-hydroxylation of ketones, or non-oxidative carbon-hetero bond cleavage. This seemingly unmatched versatility in oxygenation chemistry results from extensive fine-tuning and regiospecific functionalization of the flavin cofactor that is tightly controlled by the surrounding protein matrix. Accordingly, FPMOs steer the formation of covalent flavin-oxygen adducts for oxygen transfer in the form of the classical flavin-C4a-(hydro)peroxide or the recently discovered N5-functionalized flavins (i.e. the flavin-N5-oxide and the flavin-N5-peroxide), while in rare cases covalent oxygen adduct formation may be foregone entirely. Finally, we speculate about hitherto undiscovered flavin-mediated oxygenation reactions and compare FPMOs to cytochrome P450 monooxygenases, before addressing open questions and challenges for the future investigation of FPMOs.
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Arne Matthews
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
Karbakhsh Ravari A, Pineda-Galvan Y, Huynh A, Ezhov R, Pushkar Y. Facile Light-Induced Transformation of [Ru II(bpy) 2(bpyNO)] 2+ to [Ru II(bpy) 3] 2. Inorg Chem 2020; 59:13880-13887. [PMID: 32924462 DOI: 10.1021/acs.inorgchem.0c01446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ru-based coordination compounds have important applications as photosensitizers and catalysts. [RuII(bpy)2(bpyNO)]2+ (bpy = 2,2'-bipyridine and bpyNO = 2,2'-bipyridine-N-oxide) was reported to be extremely light-sensitive, but its light-induced transformation pathways have not been analyzed. Here, we elucidated a mechanism of the light-induced transformation of [RuII(bpy)2(bpyNO)]2+ using UV-vis, EPR, resonance Raman, and NMR spectroscopic techniques. The spectroscopic analysis was augmented with the DFT calculations. We concluded that upon 530-650 nm light excitation, 3[RuIII(bpyNO-•)(bpy)2]2+ is formed similarly to the 3[RuIII(bpy-•)(bpy)2]2+ light-induced state of the well-known photosensitizer [RuII(bpy)3]2+. An electron localization on the bpyNO ligand was confirmed by obtaining a unique EPR signal of reduced [RuII(bpy)2(bpyNO-•)]+ (gxx = 2.02, gyy = 1.99, and gzz = 1.87 and 14N hfs Axx = 12 G, Ayy = 34 G, and Azz = 11 G). 3[RuIII(bpyNO-•)(bpy)2]2+ may evolve via breaking of the Ru-O-N fragment at two different positions resulting in [RuIV═O(bpy)2(bpyout)]2+ for breakage at the O-|-N bond and [RuII(H2O)(bpy)2(bpyNOout)]2+ for breakage at the Ru-|-O bond. These pathways were found to have comparable ΔG. A reduction of [RuIV═O(bpy)2(bpyout)]2+ may result in water elimination and formation of [RuII(bpy)3]2+. The expected intermediates, [RuIII(bpy)2(bpyNO)]3+ and [RuIII(bpy)3]3+, were detected by EPR. In addition, a new signal with gxx = 2.38, gyy = 2.10, and gzz = 1.85 was observed and tentatively assigned to a complex with the dissociated ligand, such as [RuIII(H2O)(bpy)2(bpyNOout)]3+. The spectroscopic signatures of [RuIV═O(bpy)2(bpyout)]2+ were not observed, although DFT analysis and [RuII(bpy)3]2+ formation suggest this intermediate. Thus, [RuII(bpy)2(bpyNO)]2+ has potential as a light-induced oxidizer.
Collapse
Affiliation(s)
- Alireza Karbakhsh Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Huynh
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Sheng H, Liu Q, Su XD, Lu Y, Wang ZX, Chen XY. Visible-Light-Triggered Iodinations Facilitated by Weak Electrostatic Interaction of N-Heterocyclic Carbenes. Org Lett 2020; 22:7187-7192. [DOI: 10.1021/acs.orglett.0c02523] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Di Su
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Lin J, Xu Q, Lin X, Hua Y, Chen D, Ruan Y, Zhang H, Xia H. The First
OCCCO
Pentadentate Chelates: Osmium Mediated Stepwise Oxidations of Terminal Alkynes by Pyridine
N
‐Oxide. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jianfeng Lin
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Qiannan Xu
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Xinlei Lin
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yonghong Ruan
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
20
|
Liu Q, Zhang CS, Sheng H, Enders D, Wang ZX, Chen XY. Site-Selective Pyridyl Alkyl Ketone Synthesis from N-Alkenoxypyridiniums through Boekelheide-Type Rearrangements. Org Lett 2020; 22:5617-5621. [DOI: 10.1021/acs.orglett.0c01984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dieter Enders
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
21
|
Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. Nat Chem Biol 2020; 16:556-563. [DOI: 10.1038/s41589-020-0476-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022]
|
22
|
Konev MO, Cardinale L, Jacobi von Wangelin A. Catalyst-Free N-Deoxygenation by Photoexcitation of Hantzsch Ester. Org Lett 2020; 22:1316-1320. [DOI: 10.1021/acs.orglett.9b04632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikhail O. Konev
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | | |
Collapse
|
23
|
Chen F, Yang C, Hu X, Zhang X, Xie H, Jiang H, Jiang F, Zeng W. Photocatalyzed formal carbooxygenation of terminal alkynes. Org Chem Front 2020. [DOI: 10.1039/d0qo00020e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient visible-light-induced formal carbooxygenation of N-arylsulfonylamido alkynes with molecular oxygen has been developed.
Collapse
Affiliation(s)
- Fengjuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiaoqi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Fubin Jiang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
24
|
Zhang S, Wu C, Zhang Z, Wang T. Metal-Free Synthesis of 3-(Iso)quinolinyl 4-Chromenones and 3-(Iso)quinolinyl 4-Quinolones from (Iso)quinoline N-Oxides and Ynones. Org Lett 2019; 21:9995-9998. [PMID: 31794231 DOI: 10.1021/acs.orglett.9b03921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Chun Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
25
|
Li X, Zhou G, Du X, Wang T, Zhang Z. Catalyst- and Additive-Free Cascade Reaction of Isoquinoline N-Oxides with Alkynones: An Approach to Benzoazepino[2,1-a]isoquinoline Derivatives. Org Lett 2019; 21:5630-5633. [PMID: 31287323 DOI: 10.1021/acs.orglett.9b01966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xuetong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Guanghua Zhou
- Department of Chemistry, Nanchang Normal University, No. 889 Ruixiang Road, Nanchang 330032, China
| | - Xinru Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|