1
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Chang CW, Lin MH, Chiang TY, Wu CH, Lin TC, Wang CC. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. SCIENCE ADVANCES 2023; 9:eadk0531. [PMID: 37851803 PMCID: PMC10584349 DOI: 10.1126/sciadv.adk0531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The stereoselectivity of glycosidic bond formation continues to pose a noteworthy hurdle in synthesizing carbohydrates, primarily due to the simultaneous occurrence of SN1 and SN2 processes during the glycosylation reaction. Here, we applied an in-depth analysis of the glycosylation mechanism by using low-temperature nuclear magnetic resonance and statistical approaches. A pathway driven by counterion exchanges and reaction byproducts was first discovered to outline the stereocontributions of intermediates. Moreover, the relative reactivity values, acceptor nucleophilic constants, and Hammett substituent constants (σ values) provided a general index to indicate the mechanistic pathways. These results could allow building block tailoring and reaction condition optimization in carbohydrate synthesis to be greatly facilitated and simplified.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
4
|
Chooppawa T, Janprasert P, Padungros P. One-Pot Synthesis of Glycosyl Chlorides from Thioglycosides Mediated by Bromodiethylsulfonium Salt as A Mild Oxidant. Synlett 2022. [DOI: 10.1055/a-1852-6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conventional synthesis of glycosyl chlorides from thioglycosides relies on the two sequential oxidation and chlorination. A one-pot synthesis of glycosyl chlorides is warranted as an alternative method. Herein, we report the one-pot synthesis of glycosyl chlorides from thioglycoside precursors. The transformation was mediated at low temperature by bromodiethylsulfonium bromopentachloroantimonate (BDSB) as a mild oxidant and n-Bu4NCl as an additive. The armed thioglycosides afforded the corresponding α-glycosyl chlorides in moderate to good yields under the optimized conditions. Low conversions and yields were obtained when the less reactive disarmed thioglycosides were used. Unexpectedly, BDSB-mediated oxidation of thioglycosides without the addition of n-Bu4NCl also afforded the α-glycosyl chlorides in moderate yields. We suggest a mechanism involving the transfer of chloride ions from the non-nucleophilic bromopentachloroantimonate (SbCl5Br) anion to the oxocarbenium ion.
Collapse
Affiliation(s)
- Tianchai Chooppawa
- Chemistry, Chulalongkorn University Faculty of Science, Bangkok, Thailand
| | | | - Panuwat Padungros
- Chemistry, Chulalongkorn University Faculty of Science, Bangkok, Thailand
| |
Collapse
|
5
|
Traboni S, Vessella G, Bedini E, Iadonisi A. Solvent-free, under air selective synthesis of α-glycosides adopting glycosyl chlorides as donors. Org Biomol Chem 2021; 18:5157-5163. [PMID: 32583825 DOI: 10.1039/d0ob01024c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
α-Glycosides are highly relevant synthetic targets due to their abundance in natural oligosaccharides involved in many biological processes. Nevertheless their preparation is hampered by several issues, due to both the strictly anhydrous conditions typically required in glycosylation procedures and the non-trivial achievement of high α-stereoselectivity, one of the major challenges in oligosaccharide synthesis. In this paper we report a novel and efficient approach for the highly stereoselective synthesis of α-glycosides. This is based on the unprecedented solvent-free combination of triethylphosphite, tetrabutylammonium bromide and N,N-diisopropylethylamine for the activation of glycosyl chlorides under air. Despite the relative stability of glycosyl chlorides with respect to more reactive halide donors, the solvent-free procedure allowed a wide set of α-glycosides, including biorelevant fragments, to be obtained in much shorter times compared with similar glycosylation approaches in solution. The presented method features a wide target scope and functional group compatibility, also serving with partially disarmed substrates, and it does not require a high stoichiometric excess of reagents nor the preparation of expensive precursors. The solvent-free glycosylation can be even directly performed from 1-hydroxy sugars without purification of the in situ generated chloride, providing an especially useful opportunity in the case of highly reactive and labile glycosyl donors.
Collapse
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| | - Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| |
Collapse
|
6
|
Fairbanks AJ. Applications of Shoda's reagent (DMC) and analogues for activation of the anomeric centre of unprotected carbohydrates. Carbohydr Res 2020; 499:108197. [PMID: 33256953 DOI: 10.1016/j.carres.2020.108197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
2-Chloro-1,3-dimethylimidazolinium chloride (DMC, herein also referred to as Shoda's reagent) and its derivatives are useful for numerous synthetic transformations in which the anomeric centre of unprotected reducing sugars is selectively activated in aqueous solution. As such unprotected sugars can undergo anomeric substitution with a range of added nucleophiles, providing highly efficient routes to a range of glycosides and glycoconjugates without the need for traditional protecting group manipulations. This mini-review summarizes the development of DMC and some of its derivatives/analogues, and highlights recent applications for protecting group-free synthesis.
Collapse
Affiliation(s)
- Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
7
|
Choutka J, Kratochvíl M, Zýka J, Pohl R, Parkan K. Straightforward synthesis of protected 2-hydroxyglycals by chlorination-dehydrochlorination of carbohydrate hemiacetals. Carbohydr Res 2020; 496:108086. [PMID: 32828008 DOI: 10.1016/j.carres.2020.108086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
A straightforward and scalable method for the synthesis of protected 2-hydroxyglycals is described. The approach is based on the chlorination of carbohydrate-derived hemiacetals, followed by an elimination reaction to establish the glycal moiety. 1,2-dehydrochlorination reactions were studied on a range of glycosyl chlorides to provide suitable reaction conditions for this transformation. Benzyl ether, isopropylidene and benzylidene protecting groups, as well as interglycosidic linkage, were found to be compatible with this protocol. The described method is operationally simple and allows for the quick preparation of 2-hydroxyglycals with other than ester protecting groups, providing a feasible alternative to existing methods.
Collapse
Affiliation(s)
- Jan Choutka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Michal Kratochvíl
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jakub Zýka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo Nám. 2, 166 10, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
8
|
Geringer SA, Singh Y, Hoard DJ, Demchenko AV. A Highly Efficient Glycosidation of Glycosyl Chlorides by Using Cooperative Silver(I) Oxide-Triflic Acid Catalysis. Chemistry 2020; 26:8053-8063. [PMID: 32145116 PMCID: PMC7695998 DOI: 10.1002/chem.201905576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Following our discovery that silver(I) oxide-promoted glycosylation with glycosyl bromides can be greatly accelerated in the presence of catalytic TMSOTf or TfOH, we report herein a new discovery that glycosyl chlorides are even more effective glycosyl donors under these reaction conditions. The developed reaction conditions work well with a variety of glycosyl chlorides. Both benzoylated and benzylated chlorides have been successfully glycosidated, and these reaction conditions proved to be effective in coupling substrates containing nitrogen and sulfur atoms. Another convenient feature of this glycosylation is that the progress of the reaction can be monitored visually; its completion can be judged by the disappearance of the characteristic dark color of Ag2 O.
Collapse
Affiliation(s)
- Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Daniel J. Hoard
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
9
|
Tatina MB, Moussa Z, Xia M, Judeh ZMA. Perfluorophenylboronic acid-catalyzed direct α-stereoselective synthesis of 2-deoxygalactosides from deactivated peracetylated d-galactal. Chem Commun (Camb) 2019; 55:12204-12207. [PMID: 31549691 DOI: 10.1039/c9cc06151g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perfluorophenylboronic acid 1c catalyzes the direct stereoselective addition of alcohol nucleophiles to deactivated peracetylated d-galactal to give 2-deoxygalactosides in 55-88% yield with complete α-selectivity. The unprecedented results reported here also enable the synthesis of disaccharides containing the 2-deoxygalactose moiety directly from the deactivated peracetylated d-galactal. This convenient and metal-free glycosylation method works well with a wide range of alcohol nucleophiles as acceptors and tolerates a range of functional groups without the formation of the Ferrier byproduct and without the need for a large excess of nucleophiles or additives. The method is potentially useful for the synthesis of a variety of α-2-deoxygalactosides.
Collapse
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, 15551, United Arab Emirates
| | - Mengxin Xia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
10
|
Pongener I, Nikitin K, McGarrigle EM. Synthesis of glycosyl chlorides using catalytic Appel conditions. Org Biomol Chem 2019; 17:7531-7535. [PMID: 31369028 DOI: 10.1039/c9ob01544b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stereoselective synthesis of glycosyl chlorides using catalytic Appel conditions is described. Good yields of α-glycosyl chlorides were obtained using a range of glycosyl hemiacetals, oxalyl chloride and 5 mol% Ph3PO. For 2-deoxysugars treatment of the corresponding hemiacetals with oxalyl chloride without phosphine oxide catalyst also gave good yields of glycosyl chloride. The method is operationaly simple and the 5 mol% phosphine oxide by-product can be removed easily. Alternatively a one-pot, multi-catalyst glycosylation can be carried out to transform the glycosyl hemiacetal directly to a glycoside.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kirill Nikitin
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoghan M McGarrigle
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Wang T, Singh Y, Stine KJ, Demchenko AV. Investigation of Glycosyl Nitrates as Building Blocks for Chemical Glycosylation. European J Org Chem 2018; 2018:6699-6705. [PMID: 31341403 DOI: 10.1002/ejoc.201801272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosyl nitrates are important synthetic intermediates in the synthesis of 2-amino sugars, 1,2-orthoesters or, more recently, 2-OH glucose. However, glycosyl nitrates have never been glycosidated. Presented herein is our first attempt to use glycosyl nitrates as glycosyl donors for O-glycosylation. Lanthanide triflates showed good affinity to activate the nitrate leaving group.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
12
|
Abstract
Glycosyl chlorides have historically been activated using harsh conditions and/or toxic stoichiometric promoters. More recently, the Ye and the Jacobsen groups showed that glycosyl chlorides can be activated under organocatalytic conditions. However, those reactions are slow, require specialized catalysts and high temperatures, but still provide only moderate yields. Presented herein is a simple method for the activation of glycosyl chlorides using abundant and inexpensive ferric chloride in catalytic amounts. Our preliminary results indicate that both benzylated and benzoylated glycosyl chlorides can be activated with 20 mol% of FeCl3.
Collapse
Affiliation(s)
- Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | |
Collapse
|