1
|
Selicharová I, Fabre B, Soledad Garre Hernández M, Lubos M, Pícha J, Voburka Z, Mitrová K, Jiráček J. Combinatorial Libraries of Bipodal Binders of the Insulin Receptor. ChemMedChem 2024; 19:e202400145. [PMID: 38445366 DOI: 10.1002/cmdc.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold. These constructs, evaluated in a resin bead-bound format, were designed to assess their binding to the insulin receptor. Despite notable nonspecific binding, our approach successfully generated and tested millions of compounds. Rigorous evaluations via flow cytometry and specific antibodies revealed peptide sequences with specific interactions at either receptor binding Site 1 or 2. Notably, these sequences bear similarity to peptides discovered through phage display by other researchers. This convergence of chemical and biological methods underscores nature's beauty, revealing general principles in peptide binding to the insulin receptor. Overall, our study deepens the understanding of molecular interactions in ligand binding to the insulin receptor, highlighting the challenges of targeting large proteins with small synthetic peptides.
Collapse
Affiliation(s)
- Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - María Soledad Garre Hernández
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Marta Lubos
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| |
Collapse
|
2
|
Ehrmann K, Barner-Kowollik C. Colorful 3D Printing: A Critical Feasibility Analysis of Multi-Wavelength Additive Manufacturing. J Am Chem Soc 2023. [PMID: 37922417 DOI: 10.1021/jacs.3c09567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Employing two colors of light to 3D print objects holds potential for accessing advanced printing modes, such as the generation of multi-material objects from a single print. Thus, dual-wavelength-driven photoreactive systems (reactions that require or utilize two wavelengths) and their exploitation as chemo-technological solutions for additive manufacturing technologies have experienced considerable development over the last few years. Such systems saw an increase in printing speeds, a decrease in resolution thresholds, and─perhaps most importantly─the actual generation of multi-material objects. However, the pace at which such reactive systems are developed is moderate and varies significantly depending on the fashion in which the two colors of light are employed. Herein, we address for the first time the varying logic conjugations of light-activated chemical compounds in dual-wavelength photochemical processes in a systematic manner and consider their implications from a photochemical point of view. To date, four dual-wavelength reaction types have been reported, termed synergistic (λ1 AND λ2), antagonistic (reversed λ1 AND λ2), orthogonal (λ1 OR λ2), and─most recently─cooperative (λ1 AND λ2 or λ1 OR λ2). The progress of their implementation in additive manufacturing is assessed individually, and their concurrent and individual chemical challenges are identified. These challenges need to be addressed for future dual-wavelength photochemical systems to progress multi-wavelength additive manufacturing technologies beyond their current limitations.
Collapse
Affiliation(s)
- Katharina Ehrmann
- Institute for Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Antonijevic M, Charou D, Ramos I, Valcarcel M, Gravanis A, Villace P, Callizot N, Since M, Dallemagne P, Charalampopoulos I, Rochais C. Design, synthesis and biological characterization of novel activators of the TrkB neurotrophin receptor. Eur J Med Chem 2023; 248:115111. [PMID: 36645981 DOI: 10.1016/j.ejmech.2023.115111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Numerous studies have been published about the implication of the neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis and motor neuron disease. BDNF activates the TrkB receptor with high potency and specificity, promoting neuronal survival, differentiation and synaptic plasticity. Based on the main structural characteristics of LM22A-4, a previously published small molecule that acts as activator of the TrkB receptor, we have designed and synthesized a small data set of compounds. The lead idea for the design of the new compounds was to modify the third position of the LM22A-4, by introducing different substitutions in order to obtain compounds which will have not only better physicochemical properties but selective activity as well. ADME and toxicity profiles of molecules have been evaluated as well as their biological properties through the TrkB receptor and affinity to promote neurite differentiation.
Collapse
Affiliation(s)
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | | | | - Marc Since
- Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | | | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | |
Collapse
|
4
|
Late‐Stage Dehydroxyazidation of Alcohols Promoted by Trifunctional Hypervalent Azido‐Iodine(III) Reagents. Chemistry 2022; 28:e202200272. [DOI: 10.1002/chem.202200272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/10/2022]
|
5
|
Abstract
A growing theme in chemistry is the joining of multiple organic molecular building blocks to create functional molecules. Diverse derivatizable structures—here termed “scaffolds” comprised of “hubs”—provide the foundation for systematic covalent organization of a rich variety of building blocks. This review encompasses 30 tri- or tetra-armed molecular hubs (e.g., triazine, lysine, arenes, dyes) that are used directly or in combination to give linear, cyclic, or branched scaffolds. Each scaffold is categorized by graph theory into one of 31 trees to express the molecular connectivity and overall architecture. Rational chemistry with exacting numbers of derivatizable sites is emphasized. The incorporation of water-solubilization motifs, robust or self-immolative linkers, enzymatically cleavable groups and functional appendages affords immense (and often late-stage) diversification of the scaffolds. Altogether, 107 target molecules are reviewed along with 19 syntheses to illustrate the distinctive chemistries for creating and derivatizing scaffolds. The review covers the history of the field up through 2020, briefly touching on statistically derivatized carriers employed in immunology as counterpoints to the rationally assembled and derivatized scaffolds here, although most citations are from the past two decades. The scaffolds are used widely in fields ranging from pure chemistry to artificial photosynthesis and biomedical sciences.
Collapse
|
6
|
Pícha J, Buděšínský M, Mitrová K, Jiráček J. Acid-Stable Ester Linkers for the Solid-Phase Synthesis of Immobilized Peptides. Chempluschem 2020; 85:1297-1306. [PMID: 32558358 DOI: 10.1002/cplu.202000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Indexed: 11/09/2022]
Abstract
A series of N-terminally Fmoc-protected linkers of the general formula Fmoc-X-CO-O-Y-COOH have been prepared, where X is -NH-CH2 -CH2 - or -p-(aminomethyl)phenyl- and Y is -(CH2 )n - (n is 1 or 4) or -p-(methyl)phenyl-. These linkers can easily be covalently attached via their C-terminal carboxyl group to a resin bearing a free amino group. After cleavage of the N-terminal Fmoc group, the linkers can be extended by standard solid-phase peptide synthesis techniques. These ester linkers are acid-stable and resistant to the base-mediated diketopiperazine formation that often occurs during the synthesis of ester-bound peptides; they are stable at neutral pH in aqueous buffers for days but can be effectively cleaved with 0.1 m NaOH or aq. ammonia within minutes or hours, respectively. These properties make these ester handles well suited for use as linkers for the solid-phase peptide synthesis of immobilized peptides when the stable on-resin immobilization of the peptides and the testing of their biological properties in aqueous buffers at neutral pH are necessary.
Collapse
Affiliation(s)
- Jan Pícha
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
7
|
Yu Z, Mendoza A. Enantioselective Assembly of Congested Cyclopropanes using Redox-Active Aryldiazoacetates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhunzhun Yu
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Kovalová A, Pohl R, Vrabel M. Stepwise triple-click functionalization of synthetic peptides. Org Biomol Chem 2018; 16:5960-5964. [PMID: 30091427 PMCID: PMC6113709 DOI: 10.1039/c8ob01617h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 11/21/2022]
Abstract
The increasing popularity of peptides as promising molecular scaffolds for biomedical applications and as valuable biochemical probes makes new methods allowing for their modification highly desirable. We describe herein an optimized protocol based on a sequence of CuAAC click reactions and selective deprotection steps, which leads to an efficient multi-functionalization of synthetic peptides. The methodology has been successfully applied to the construction of defined heteroglycopeptides and fluorophore-quencher-containing probes for proteases. The developed chemistry thus represents an important addition to the available toolbox of methods enabling efficient postsynthetic modification of peptides. The commercial availability of numerous azide probes further greatly extends the application potential of the described methodology.
Collapse
Affiliation(s)
- Anna Kovalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
,
Flemingovo nám. 2
, 16610
, Prague
, Czech Republic
.
; Tel: +420 220183317
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
,
Flemingovo nám. 2
, 16610
, Prague
, Czech Republic
.
; Tel: +420 220183317
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
,
Flemingovo nám. 2
, 16610
, Prague
, Czech Republic
.
; Tel: +420 220183317
| |
Collapse
|