Mayer RJ, Ofial AR. Nucleophilicity of Glutathione: A Link to Michael Acceptor Reactivities.
Angew Chem Int Ed Engl 2019;
58:17704-17708. [PMID:
31560405 PMCID:
PMC6899611 DOI:
10.1002/anie.201909803]
[Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/22/2022]
Abstract
Deprotonated glutathione is among the most potent biological nucleophiles and plays an important physiological role in cellular detoxification by forming covalent conjugates with Michael acceptors. The electrophilicity E of various Michael acceptors was characterized recently according to the Patz-Mayr relation lg k2 =sN (N+E). We now determined the nucleophilic reactivity (N, sN ) of glutathione (GSH) in aqueous solution at 20 °C to connect published GSH reactivities (kGSH ) with Mayr's electrophilicity scale (E). In this way, electrophilicities E of more than 70 Michael acceptors could be estimated, which can now be used to systematically predict novel reactions with the multitude of nucleophiles whose nucleophilicity parameters N/sN are known.
Collapse