1
|
Jevric M, Klepp J, Puschnig J, Lamb O, Sumby CJ, Greatrex BW. Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions. Beilstein J Org Chem 2024; 20:823-829. [PMID: 38655557 PMCID: PMC11035982 DOI: 10.3762/bjoc.20.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
A skeletal rearrangement of a series of 6,8-dioxabicyclo[3.2.1]octan-4-ols has been developed using SOCl2 in the presence of pyridine. An oxygen migration from C5 to C4 was observed when the C4 alcohols were treated with SOCl2/pyridine, giving a 2-chloro-3,8-dioxabicyclo[3.2.1]octane ring-system via the chlorosulfite intermediate. Analogous allylic alcohols with endocyclic and exocyclic unsaturations underwent chlorination without rearrangement due to formation of allylic cations. The rearrangement was also demonstrated using Appel conditions, which gave similar results via the alkoxytriphenylphosphonium intermediate. Several reactions of the products were investigated to show the utility of the rearrangement.
Collapse
Affiliation(s)
- Martyn Jevric
- Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| | - Julian Klepp
- Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| | - Johannes Puschnig
- Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| | - Oscar Lamb
- Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| | - Christopher J Sumby
- Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, 5005, Australia
| | - Ben W Greatrex
- Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| |
Collapse
|
2
|
Scheibelberger L, Stankovic T, Pühringer M, Kählig H, Balber T, Patronas E, Rampler E, Mitterhauser M, Haschemi A, Pallitsch K. Synthesis of 4-Deoxy-4-Fluoro-d-Sedoheptulose: A Promising New Sugar to Apply the Principle of Metabolic Trapping. Chemistry 2023; 29:e202302277. [PMID: 37552007 PMCID: PMC10946558 DOI: 10.1002/chem.202302277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Fluorinated carbohydrates are important tools for understanding the deregulation of metabolic fluxes and pathways. Fluorinating specific positions within the sugar scaffold can lead to enhanced metabolic stability and subsequent metabolic trapping in cells. This principle has, however, never been applied to study the metabolism of the rare sugars of the pentose phosphate pathway (PPP). In this study, two fluorinated derivatives of d-sedoheptulose were designed and synthesized: 4-deoxy-4-fluoro-d-sedoheptulose (4DFS) and 3-deoxy-3-fluoro-d-sedoheptulose (3DFS). Both sugars are taken up by human fibroblasts but only 4DFS is phosphorylated. Fluorination of d-sedoheptulose at C-4 effectively halts the enzymatic degradation by transaldolase and transketolase. 4DFS thus has a high potential as a new PPP imaging probe based on the principle of metabolic trapping. Therefore, the synthesis of potential radiolabeling precursors for 4DFS for future radiofluorinations with fluorine-18 is presented.
Collapse
Affiliation(s)
- Lukas Scheibelberger
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
| | - Toda Stankovic
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Marlene Pühringer
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Hanspeter Kählig
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Theresa Balber
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsWähringer Gürtel 18–201090ViennaAustria
| | - Eva‐Maria Patronas
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
- Division of Pharmaceutical Technology and BiopharmaceuticsDepartment of Pharmaceutical SciencesUniversity of Vienna, UZAIIJosef-Holaubek-Platz 21090ViennaAustria
| | - Evelyn Rampler
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Markus Mitterhauser
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsWähringer Gürtel 18–201090ViennaAustria
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Arvand Haschemi
- Department of Laboratory MedicineMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
| | - Katharina Pallitsch
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
3
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
4
|
Wojaczyńska E, Steppeler F, Iwan D, Scherrmann MC, Marra A. Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules 2021; 26:7291. [PMID: 34885873 PMCID: PMC8659088 DOI: 10.3390/molecules26237291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Organocatalysis is a very useful tool for the asymmetric synthesis of biologically or pharmacologically active compounds because it avoids the use of noxious metals, which are difficult to eliminate from the target products. Moreover, in many cases, the organocatalysed reactions can be performed in benign solvents and do not require anhydrous conditions. It is well-known that most of the above-mentioned reactions are promoted by a simple aminoacid, l-proline, or, to a lesser extent, by the more complex cinchona alkaloids. However, during the past three decades, other enantiopure natural compounds, the carbohydrates, have been employed as organocatalysts. In the present exhaustive review, the detailed preparation of all the sugar-based organocatalysts as well as their catalytic properties are described.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Dominika Iwan
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Marie-Christine Scherrmann
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM-UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
5
|
Tsai YH, Borini Etichetti CM, Cicetti S, Girardini JE, Spanevello RA, Suárez AG, Sarotti AM. Design, synthesis and evaluation of novel levoglucosenone derivatives as promising anticancer agents. Bioorg Med Chem Lett 2020; 30:127247. [PMID: 32527547 DOI: 10.1016/j.bmcl.2020.127247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 11/28/2022]
Abstract
A series of levoglucosenone-derived 1,2,3-triazoles and isoxazoles featuring a flexible spacer between the heteroaromatic and anhydropyranose cores have been designed and synthesized following an hetero Michael // 1,3-dipolar cycloaddition path. The use of a design of experiments approach allowed the optimization of the oxa-Michael reaction with propargyl alcohol as nucleophile, a key step for the synthesis of the target compounds. All of the compounds were tested for their anticancer activity on MDA-MB-231 cells, featuring mutant p53. The results highlighted the importance of the introduction of the flexible spacer as well as the higher activity of oxa-Michael isoxazole-derivatives. The most prominent compounds also showed anti-proliferative activities against lung and colon cancer cell lines. The compounds showed enhanced cytotoxic effects in the presence of mutant p53, determined both by endogenous mutant p53 knock down (R280K) and by reintroducing p53 R280K in cells lacking p53 expression.
Collapse
Affiliation(s)
- Yi-Hsuan Tsai
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Carla M Borini Etichetti
- Instituto Fisiología Experimental de Rosario (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Javier E Girardini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Rolando A Spanevello
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alejandra G Suárez
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|