1
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
2
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
3
|
Wilmore JT, Beer PD. Exploiting the Mechanical Bond Effect for Enhanced Molecular Recognition and Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309098. [PMID: 38174657 DOI: 10.1002/adma.202309098] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The ubiquity of charged species in biological and industrial processes has resulted in ever-increasing interest in their selective recognition, detection, and environmental remediation. Building on the established coordination chemistry principles of the chelate and macrocyclic effects, and host preorganization, supramolecular chemists seek to construct specific 3D binding cavities reminiscent of biotic systems to enhance host-guest binding affinity and selectivity. Mechanically interlocked molecules (MIMs) present a wholly unique platform for synthetic host design, wherein topologies afforded by the mechanical bond enable the decoration of 3D cavities for non-covalent interactions with a range of target guest geometries. Notably, MIM host systems exhibit mechanical bond effect augmented affinities and selectivities for a variety of charged guest species, compared to non-interlocked acyclic and macrocycle host analogs. Furthermore, the modular nature of MIM synthesis facilitates incorporation of optical and electrochemical reporter groups, enabling fabrication of highly sensitive and specific molecular sensors. This review discusses the development of recognition and sensing MIMs, from the first reports in the late 20th century through to the present day, delineating how their topologically preorganized and dynamic host cavities enhance charged guest recognition and sensing, demonstrating the mechanical bond effect as a potent tool in future chemosensing materials.
Collapse
Affiliation(s)
- Jamie T Wilmore
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Hoyas Pérez N, Sherin PS, Posligua V, Greenfield JL, Fuchter MJ, Jelfs KE, Kuimova MK, Lewis JEM. Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold. Chem Sci 2022; 13:11368-11375. [PMID: 36320581 PMCID: PMC9533469 DOI: 10.1039/d2sc04101d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 09/06/2024] Open
Abstract
Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC 'click' chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.
Collapse
Affiliation(s)
- Nadia Hoyas Pérez
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Peter S Sherin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
5
|
Hein R, Beer PD. Halogen bonding and chalcogen bonding mediated sensing. Chem Sci 2022; 13:7098-7125. [PMID: 35799814 PMCID: PMC9214886 DOI: 10.1039/d2sc01800d] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma-hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host-guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
6
|
Sheppard SA, Bennett TLR, Long NJ. Development and Characterisation of Highly‐Conjugated Functionalised Ferrocenylene Macrocycles. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Nicholas James Long
- Imperial College of Science Dept. of Chemistry South Kensington SW7 2AZ London UNITED KINGDOM
| |
Collapse
|
7
|
Yu C, Wang X, Zhao CX, Yang S, Gan J, Wang Z, Cao Z, Qu DH. Optically probing molecular shuttling motion of [2]rotaxane by a conformation-adaptive fluorophore. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Seah GEKK, Tan AYX, Neo ZH, Lim JYC, Goh SS. Halogen Bonding Ionophore for Potentiometric Iodide Sensing. Anal Chem 2021; 93:15543-15549. [PMID: 34767713 DOI: 10.1021/acs.analchem.1c03719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iodide (I-) is an essential micronutrient for thyroid function. Hence, rapid and portable sensing is important for I- quantification in food and biological samples. Herein, we report the first example of a halogen bonding (XB) tripodal ionophore (XB1) which is selective for the I- anion. NMR binding studies of XB1 and its H-triazole analog HB2 with I- demonstrated the dominant influence of XB interactions between the ionophore and the I- analyte. The phase boundary model was applied to formulate iodide-selective electrodes with the ionophore XB1. The optimal electrode exhibited a near-Nernstian response of -51.9 mV per decade within a large dynamic range (10-1 to 10-6 M) and notably anti-Hofmeister selectivity for I- over thiocyanate (SCN-), enabling the in situ determination of I- in complex samples. This work establishes XB as a viable supramolecular interaction in the potentiometric sensing of anions.
Collapse
Affiliation(s)
- Georgina E K K Seah
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Angeline Y X Tan
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhi Hao Neo
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jason Y C Lim
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Shermin S Goh
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
9
|
Patrick SC, Hein R, Beer PD, Davis JJ. Continuous and Polarization-Tuned Redox Capacitive Anion Sensing at Electroactive Interfaces. J Am Chem Soc 2021; 143:19199-19206. [PMID: 34730337 DOI: 10.1021/jacs.1c09743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous, real-time ion sensing is of great value across various environmental and medical scenarios but remains underdeveloped. Herein, we demonstrate the potential of redox capacitance spectroscopy as a sensitive and highly adaptable ion sensing methodology, exemplified by the continuous flow sensing of anions at redox-active halogen bonding ferrocenylisophthalamide self-assembled monolayers. Upon anion binding, the redox distribution of the electroactive interface, and its associated redox capacitance, are reversibly modulated, providing a simple and direct sensory readout. Importantly, the redox capacitance can be monitored at a freely chosen, constant electrode polarization, providing a facile means of tuning both the sensor analytical performance and the anion binding affinity, by up to 1 order of magnitude. In surpassing standard voltammetric methods in terms of analytical performance and adaptability, these findings pave the way for the development of highly sensitive and uniquely tunable ion sensors. More generally, this methodology also serves as a powerful and unprecedented means of simultaneously modulating and monitoring the thermodynamics and kinetics of host-guest interactions at redox-active interfaces.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert Hein
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Paul D Beer
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
10
|
Cheong Tse Y, Hein R, Mitchell EJ, Zhang Z, Beer PD. Halogen-Bonding Strapped Porphyrin BODIPY Rotaxanes for Dual Optical and Electrochemical Anion Sensing. Chemistry 2021; 27:14550-14559. [PMID: 34319624 PMCID: PMC8596797 DOI: 10.1002/chem.202102493] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/13/2022]
Abstract
Anion receptors employing two distinct sensory mechanisms are rare. Herein, we report the first examples of halogen-bonding porphyrin BODIPY [2]rotaxanes capable of both fluorescent and redox electrochemical sensing of anions. 1 H NMR, UV/visible and electrochemical studies revealed rotaxane axle triazole group coordination to the zinc(II) metalloporphyrin-containing macrocycle component, serves to preorganise the rotaxane binding cavity and dramatically enhances anion binding affinities. Mechanically bonded, integrated-axle BODIPY and macrocycle strapped metalloporphyrin motifs enable the anion recognition event to be sensed by the significant quenching of the BODIPY fluorophore and cathodic perturbations of the metalloporphyrin P/P+. redox couple.
Collapse
Affiliation(s)
- Yuen Cheong Tse
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Robert Hein
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Edward J. Mitchell
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
11
|
Patrick SC, Hein R, Docker A, Beer PD, Davis JJ. Solvent Effects in Halogen and Hydrogen Bonding Mediated Electrochemical Anion Sensing in Aqueous Solution and at Interfaces. Chemistry 2021; 27:10201-10209. [PMID: 33881781 PMCID: PMC8360193 DOI: 10.1002/chem.202101102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 01/31/2023]
Abstract
Sensing anionic species in competitive aqueous media is a well-recognised challenge to long-term applications across a multitude of fields. Herein, we report a comprehensive investigation of the electrochemical anion sensing performance of novel halogen bonding (XB) and hydrogen bonding (HB) bis-ferrocene-(iodo)triazole receptors in solution and at self-assembled monolayers (SAMs), in a range of increasingly competitive aqueous organic solvent media (ACN/H2 O). In solution, the XB sensor notably outperforms the HB sensor, with substantial anion recognition induced cathodic voltammetric responses of the ferrocene/ferrocenium redox couple persisting even in highly competitive aqueous solvent media of 20 % water content. The response to halides, in particular, shows a markedly lower sensitivity to increasing water content associated with a unique halide selectivity at unprecedented levels of solvent polarity. The HB sensor, in contrast, generally displayed a preference towards oxoanions. A significant surface-enhancement effect was observed for both XB/HB receptive films in all solvent systems, whereby the HB sensor generally displayed larger responses towards oxoanions than its halogen bonding analogue.
Collapse
Affiliation(s)
- Sophie C. Patrick
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Robert Hein
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Andrew Docker
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Jason J. Davis
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| |
Collapse
|
12
|
Bej S, Nandi M, Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans 2021; 50:294-303. [PMID: 33300925 DOI: 10.1039/d0dt03645e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
13
|
Hein R, Li X, Beer PD, Davis JJ. Enhanced voltammetric anion sensing at halogen and hydrogen bonding ferrocenyl SAMs. Chem Sci 2020; 12:2433-2440. [PMID: 34164009 PMCID: PMC8179314 DOI: 10.1039/d0sc06210c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Halogen bonding mediated electrochemical anion sensing has very recently been established as a potent platform for the selective and sensitive detection of anions, although the principles that govern binding and subsequent signal transduction remain poorly understood. Herein we address this challenge by providing a comprehensive study of novel redox-active halogen bonding (XB) and hydrogen bonding (HB) ferrocene-isophthalamide-(iodo)triazole receptors in solution and at self-assembled monolayers (SAMs). Under diffusive conditions the sensory performance of the XB sensor was significantly superior. In molecular films the XB and HB binding motifs both display a notably enhanced, but similar, response to specific anions. Importantly, the enhanced response of these films is rationalised by a consideration of the (interfacial) dielectric microenvironment. These effects, and the resolved relationship between anion binding and signal transduction, underpin an improved fundamental understanding of anion sensing at redox-active interfaces which will benefit not just the development of more potent, real-life relevant, sensors but also new tools to study host–guest interactions at interfaces. Surface enhancement effects in the sensing of anions at redox-active molecular films are investigated in detail and rationalised based on a consideration of the dielectric binding microenvironment.![]()
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Xiaoxiong Li
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
14
|
Gholami G, Wilson BH, Zhu K, O'Keefe CA, Schurko RW, Loeb SJ. Exploring the dynamics of Zr-based metal-organic frameworks containing mechanically interlocked molecular shuttles. Faraday Discuss 2020; 225:358-370. [PMID: 33089860 DOI: 10.1039/d0fd00004c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zr(iv) metal-organic frameworks (MOFs) UiO-68 and PCN-57, containing triphenylene dicarboxylate (TPDC) and tetramethyl-triphenylene dicarboxylate (TTDC) linkers, respectively, were doped with an H-shaped tetracarboxylate linker that contains a [2]rotaxane molecular shuttle. The new MOFs, UWDM-8 and UWDM-9, contain a [2]rotaxane crossbar spanning the tetrahedral cavities of the fcu topology while the octahedral cavities remain empty. 13C solid-state NMR (SSNMR) spectra and solution 1H NMR spectra verified that the [2]rotaxanes were included as designed. Variable-temperature (VT) cross polarization (CP) magic-angle spinning (MAS) 13C SSNMR was used to explore the translational motion of the macrocyclic ring in both MOFs. The SSNMR results clearly show that the structure of the linker (TPDCvs.TTDC) affects the shuttling rate of the macrocyclic ring, although questions remain as to how rotation of the central phenylene unit of the strut might also affect the motion of the macrocycle.
Collapse
Affiliation(s)
- Ghazale Gholami
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, N9B 3P4, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Kampes R, Tepper R, Görls H, Bellstedt P, Jäger M, Schubert US. Facile and Reliable Emission-Based Nanomolar Anion Sensing by Luminescent Iridium Receptors Featuring Chelating Halogen-Bonding Sites. Chemistry 2020; 26:14679-14687. [PMID: 32686111 PMCID: PMC7756348 DOI: 10.1002/chem.202002738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/21/2022]
Abstract
An anion sensor is presented that combines a bidentate hydrogen‐ (HB) or halogen‐bonding (XB) site with a luminescent monocationic Ir fragment for strong binding of common anions (Ka up to 6×104
m−1) with diagnostic emission changes. A new emission‐based protocol for fast and reliable detection was derived on the basis of correction for systematic but unspecific background effects. Such a simple correction routine circumvents the hitherto practical limitations of systematic emission‐based analysis of anion binding with validated open‐source software (BindFit). The anticipated order of Ka values was obeyed according to size and basicity of the anions (Cl>Br=OAc) as well as the donor atom of the receptor (XB: 6×104
m−1 > HB: 5×103
m−1), and led to submicromolar limits of detection within minutes. The results were further validated by advanced NMR techniques, and corroborated by X‐ray crystallographic data and DFT analysis, which reproduced the structural and electronic features in excellent agreement. The results suggest that corrected emission‐based sensing may become a complementary, reliable, and fast tool to promote the use of XB in various application fields, due to the simple and fast optical determination at high dilution.
Collapse
Affiliation(s)
- Robin Kampes
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ronny Tepper
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Current address: Intelligent fluids GmbH, Karl-Heine-Strasse 99, 04229, Leipzig, Germany
| | - Helmar Görls
- Laboratory of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Peter Bellstedt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Laboratory of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
16
|
|
17
|
Chen XL, Shen YJ, Gao C, Yang J, Sun X, Zhang X, Yang YD, Wei GP, Xiang JF, Sessler JL, Gong HY. Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. J Am Chem Soc 2020; 142:7443-7455. [PMID: 32216311 DOI: 10.1021/jacs.9b13473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substituent effects play critical roles in both modulating reaction chemistry and supramolecular self-assembly processes. Using substituted terephthalate dianions (p-phthalic acid dianions; PTADAs), the effect of varying the type, number, and position of the substituents was explored in terms of their ability to regulate the inherent anion complexation features of a tetracationic macrocycle, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (referred to as the Texas-sized molecular box; 14+), in the form of its tetrakis-PF6- salt in DMSO. Several of the tested substituents, including 2-OH, 2,5-di(OH), 2,5-di(NH2), 2,5-di(Me), 2,5-di(Cl), 2,5-di(Br), and 2,5-di(I), were found to promote pseudorotaxane formation in contrast to what was seen for the parent PTADA system. Other derivatives of PTADA, including those with 2,3-di(OH), 2,6-di(OH), 2,5-di(OMe), 2,3,5,6-tetra(Cl), and 2,3,5,6-tetra(F) substituents, led only to so-called outside binding, where the anion interacts with 14+ on the outside of the macrocyclic cavity. The differing binding modes produced by the choice of PTADA derivative were found to regulate further supramolecular self-assembly when the reaction components included additional metal cations (M). Depending on the specific choice of PTADA derivatives and metal cations (M = Co2+, Ni2+, Zn2+, Cd2+, Gd3+, Nd3+, Eu3+, Sm3+, Tb3+), constructs involving one-dimensional polyrotaxanes, outside-type rotaxanated supramolecular organic frameworks (RSOFs), or two-dimensional metal-organic rotaxane frameworks (MORFs) could be stabilized. The presence and nature of the substituent were found to dictate which specific higher order self-assembled structure was obtained using a given cation. In the specific case of the 2,5-di(OH), 2,5-di(Cl), and 2,5-di(Br) PTADA derivatives and Eu3+, so-called MORFs with distinct fluorescence emission properties could be produced. The present work serves to illustrate how small changes in guest substitution patterns may be used to control structure well beyond the first interaction sphere.
Collapse
Affiliation(s)
- Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Chao Gao
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Jian Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Sun
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Zhang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Gong-Ping Wei
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China.,Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Nandi M, Bej S, Bhunia S, Ghosh P. Template Directed Syntheses of Electrochemically Active [2]Rotaxanes: Anion Binding and Redox Studies. ChemElectroChem 2020. [DOI: 10.1002/celc.201901655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mandira Nandi
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Somnath Bej
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Sarmistha Bhunia
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Pradyut Ghosh
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
19
|
Abstract
Anions play a vital role in a broad range of environmental, technological, and physiological processes, making their detection/quantification valuable. Electroanalytical sensors offer much to the selective, sensitive, cheap, portable, and real-time analysis of anion presence where suitable combinations of selective (noncovalent) recognition and transduction can be integrated. Spurred on by significant developments in anion supramolecular chemistry, electrochemical anion sensing has received considerable attention in the past two decades. In this review, we provide a detailed overview of all electroanalytical techniques that have been used for this purpose, including voltammetric, impedimetric, capacititive, and potentiometric methods. We will confine our discussion to sensors that are based on synthetic anion receptors with a specific focus on reversible, noncovalent interactions, in particular, hydrogen- and halogen-bonding. Apart from their sensory properties, we will also discuss how electrochemical techniques can be used to study anion recognition processes (e.g., binding constant determination) and will furthermore provide a detailed outlook over future efforts and promising new avenues in this field.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| | - Paul D Beer
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| | - Jason J Davis
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| |
Collapse
|
20
|
Berger G, Frangville P, Meyer F. Halogen bonding for molecular recognition: new developments in materials and biological sciences. Chem Commun (Camb) 2020; 56:4970-4981. [DOI: 10.1039/d0cc00841a] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights recent developments of halogen bonding in materials and biological sciences with a short discussion on the nature of the interaction.
Collapse
Affiliation(s)
- Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Pierre Frangville
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| |
Collapse
|
21
|
Santra S, Ghosh P. Fluorophoric [2]rotaxanes: post-synthetic functionalization, conformational fluxionality and metal ion chelation. NEW J CHEM 2020. [DOI: 10.1039/d0nj00353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophoric [2]rotaxanes form an exciplex upon interpenetration and the exciplex signals are used to monitor the chelation properties of the interlocked systems.
Collapse
Affiliation(s)
- Saikat Santra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Department of Chemistry
| | - Pradyut Ghosh
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
22
|
Foyle ÉM, White NG. Anion templated crystal engineering of halogen bonding tripodal tris(halopyridinium) compounds. CrystEngComm 2020. [DOI: 10.1039/d0ce00241k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crystal engineering of halogen bonding tripodal receptors is found to be highly dependent on solvent and choice of anion.
Collapse
Affiliation(s)
- Émer M. Foyle
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Nicholas G. White
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
23
|
Schröder HV, Schalley CA. Electrochemically switchable rotaxanes: recent strides in new directions. Chem Sci 2019; 10:9626-9639. [PMID: 32110308 PMCID: PMC7020790 DOI: 10.1039/c9sc04118d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Are they still electrifying? Electrochemically switchable rotaxanes are well known for their ability to efficiently undergo changes of (co-)conformation and properties under redox-control. Thus, these mechanically interlocked assemblies represent an auspicious liaison between the fields of molecular switches and molecular electronics. Since the first reported example of a redox-switchable molecular shuttle in 1994, improved tools of organic and supramolecular synthesis have enabled sophisticated new architectures, which provide precise control over properties and function. This perspective covers recent advances in the area of electrochemically active rotaxanes including novel molecular switches and machines, metal-containing rotaxanes, non-equilibrium systems and potential applications.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|
24
|
Kumawat LK, Abogunrin AA, Kickham M, Pardeshi J, Fenelon O, Schroeder M, Elmes RBP. Squaramide-Naphthalimide Conjugates as "Turn-On" Fluorescent Sensors for Bromide Through an Aggregation-Disaggregation Approach. Front Chem 2019; 7:354. [PMID: 31192187 PMCID: PMC6540876 DOI: 10.3389/fchem.2019.00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
The syntheses of two new squaramide-naphthalimide conjugates (SQ1 and SQ2) are reported where both compounds have been shown to act as selective fluorescence "turn on" probes for bromide in aqueous DMSO solution through a disaggregation induced response. SQ1 and SQ2 displayed a large degree of self-aggregation in aqueous solution that is disrupted at increased temperature as studied by 1H NMR and Scanning Electron Microscopy (SEM). Moreover, the fluorescence behavior of both receptors was shown to be highly dependent upon the aggregation state and increasing temperature gave rise to a significant increase in fluorescence intensity. Moreover, this disaggregation induced emission (DIE) response was exploited for the selective recognition of certain halides, where the receptors gave rise to distinct responses related to the interaction of the various halide anions with the receptors. Addition of F- rendered both compounds non-emissive; thought to be due to a deprotonation event while, surprisingly, Br- resulted in a dramatic 500-600% fluorescence enhancement thought to be due to a disruption of compound aggregation and allowing the monomeric receptors to dominate in solution. Furthermore, optical sensing parameters such as limits of detection and binding constant of probes were also measured toward the various halides (F-, Cl-, Br-, and I-) where both SQ1 and SQ2 were found to sense halides with adequate sensitivity to measure μM levels of halide contamination. Finally, initial studies in a human cell line were also conducted where it was observed that both compounds are capable of being taken up by HeLa cells, exhibiting intracellular fluorescence as measured by both confocal microscopy and flow cytometry. Finally, using flow cytometry we were also able to show that cells treated with NaBr exhibited a demonstrable spectroscopic response when treated with either SQ1 or SQ2.
Collapse
Affiliation(s)
- Lokesh K Kumawat
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Anthony A Abogunrin
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Michelle Kickham
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland.,Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Jyotsna Pardeshi
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Orla Fenelon
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Martina Schroeder
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Maynooth University Human Health Research Institute, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Robert B P Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland.,Maynooth University Human Health Research Institute, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|