1
|
Komarova BS, Novikova NS, Gerbst AG, Sinitsyna OA, Rubtsova EA, Kondratyeva EG, Sinitsyn AP, Nifantiev NE. Combination of 3- O-Levulinoyl and 6- O-Trifluorobenzoyl Groups Ensures α-Selectivity in Glucosylations: Synthesis of the Oligosaccharides Related to Aspergillus fumigatus α-(1 → 3)-d-Glucan. J Org Chem 2023; 88:12542-12564. [PMID: 37593939 DOI: 10.1021/acs.joc.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Stereospecific α-glucosylation of primary and secondary OH-group at carbohydrate acceptors is achieved using glucosyl N-phenyl-trifluoroacetimidate (PTFAI) donor protected with an electron-withdrawing 2,4,5-trifluorobenzoyl (TFB) group at O-6 and the participating levulinoyl (Lev) group at O-3. New factors have been revealed that might explain α-stereoselectivity in the case of TFB and pentafluorobenzoyl (PFB) groups at O-6. They are of conformational nature and confirmed by DFT calculations. The potential of this donor, as well as the orthogonality of TFB and Lev protecting groups, is showcased by the synthesis of α-(1 → 3)-linked pentaglucoside corresponding to Aspergillus fumigatus α-(1 → 3)-d-glucan and of its hexasaccharide derivative, bearing β-glucosamine residue at the non-reducing end.
Collapse
Affiliation(s)
- Bozhena S Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia S Novikova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga A Sinitsyna
- Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-11, Moscow 119992, Russia
| | - Ekaterina A Rubtsova
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Elena G Kondratyeva
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Arkady P Sinitsyn
- Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-11, Moscow 119992, Russia
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
2
|
Nakatsu K, Okamoto A, Hayashi G, Murakami H. Repetitive Thiazolidine Deprotection Using a Thioester‐Compatible Aldehyde Scavenger for One‐Pot Multiple Peptide Ligation**. Angew Chem Int Ed Engl 2022; 61:e202206240. [DOI: 10.1002/anie.202206240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Koki Nakatsu
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems Institutes of Innovation for Future Society Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
3
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
4
|
Hayashi G, Nakatsu K, Okamoto A, Murakami H. Repetitive Thiazolidine Deprotection Using a Thioester‐Compatible Aldehyde Scavenger for One‐Pot Multiple Peptide Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gosuke Hayashi
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering Furo-choChikusa-ku 464-8603 Nagoya JAPAN
| | - Koki Nakatsu
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering JAPAN
| | - Akimitsu Okamoto
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Chemistry and Biotechnology JAPAN
| | - Hiroshi Murakami
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering JAPAN
| |
Collapse
|
5
|
Tian J, Li Y, Ma B, Tan Z, Shang S. Automated Peptide Synthesizers and Glycoprotein Synthesis. Front Chem 2022; 10:896098. [PMID: 35601548 PMCID: PMC9117762 DOI: 10.3389/fchem.2022.896098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development and application of commercially available automated peptide synthesizers has played an essential role in almost all areas of peptide and protein research. Recent advances in peptide synthesis method and solid-phase chemistry provide new opportunities for optimizing synthetic efficiency of peptide synthesizers. The efforts in this direction have led to the successful preparation of peptides up to more than 150 amino acid residues in length. Such success is particularly useful for addressing the challenges associated with the chemical synthesis of glycoproteins. The purpose of this review is to provide a brief overview of the evolution of peptide synthesizer and glycoprotein synthesis. The discussions in this article include the principles underlying the representative synthesizers, the strengths and weaknesses of different synthesizers in light of their principles, and how to further improve the applicability of peptide synthesizers in glycoprotein synthesis.
Collapse
Affiliation(s)
- Jiekang Tian
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongping Tan, ; Shiying Shang,
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- *Correspondence: Zhongping Tan, ; Shiying Shang,
| |
Collapse
|
6
|
Asahina Y, Ando T, Hojo H. Toward the chemical syntheses of fucosylated peptides: A combination of protecting groups for the hydroxy groups of fucose. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| | - Tatsuya Ando
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| |
Collapse
|
7
|
Giesler RJ, Spaltenstein P, Jacobsen MT, Xu W, Maqueda M, Kay MS. A glutamic acid-based traceless linker to address challenging chemical protein syntheses. Org Biomol Chem 2021; 19:8821-8829. [PMID: 34585207 PMCID: PMC8604549 DOI: 10.1039/d1ob01611c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
Collapse
Affiliation(s)
- Riley J Giesler
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Michael T Jacobsen
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Weiliang Xu
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| |
Collapse
|
8
|
Yan B, Li W, Hackenberger CPR. A silyl ether-protected building block for O-GlcNAcylated peptide synthesis to enable one-pot acidic deprotection. Org Biomol Chem 2021; 19:8014-8017. [PMID: 34596198 DOI: 10.1039/d1ob00510c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we introduce a novel building block for Fmoc/tBu solid phase peptide synthesis (SPPS) of β-linked O-GlcNAcylated peptides. This building block carries acid labile silyl ether protecting groups, which are fully removed under TFA-mediated peptide cleavage conditions from the resin, thus requiring fewer synthetic steps and no intermediate purification as compared to other acid or base labile protecting group strategies.
Collapse
Affiliation(s)
- Bingjia Yan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
- Humboldt Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Wenyi Li
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
- Humboldt Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
9
|
Ito S, Asahina Y, Hojo H. Investigation of protecting group for sialic acid carboxy moiety toward sialylglycopeptide synthesis by the TFA-labile protection strategy. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Rodríguez-Mayor AV, Peralta-Camacho GJ, Cárdenas-Martínez KJ, García-Castañeda JE. Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200701121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Collapse
|
11
|
Nakatsu K, Hayashi G, Okamoto A. Toolbox for chemically synthesized histone proteins. Curr Opin Chem Biol 2020; 58:10-19. [DOI: 10.1016/j.cbpa.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 01/28/2023]
|
12
|
Lin JD, Liu X. Recent Development in Ligation Methods for Glycopeptide and Glycoprotein Synthesis. Chem Asian J 2020; 15:2548-2557. [DOI: 10.1002/asia.202000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Desmond Lin
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Xue‐Wei Liu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
13
|
Reintjens NRM, Koemans TS, Zilverschoon N, Castelli R, Cordfunke RA, Drijfhout JW, Meeuwenoord NJ, Overkleeft HS, Filippov DV, Marel GA, Codée JDC. Synthesis of
C
‐Glycosyl Amino Acid Building Blocks Suitable for the Solid‐Phase Synthesis of Multivalent Glycopeptide Mimics. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Niels R. M. Reintjens
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tony S. Koemans
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Nick Zilverschoon
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Riccardo Castelli
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Robert A. Cordfunke
- Dept. of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden University Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Jan Wouter Drijfhout
- Dept. of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden University Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Nico J. Meeuwenoord
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
14
|
Mechanism, origin of diastereoselectivity and factors affecting reaction efficiency of serine/threonine ligation: A computational study. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Asahina Y, Hojo H. One Step Synthesis of Fmoc-Aminoacyl- N-alkylcysteine via the Ugi Four-Component Condensation Reaction. J Org Chem 2020; 85:1458-1465. [PMID: 31793784 DOI: 10.1021/acs.joc.9b02433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A prompt preparation method of the Fmoc-aminoacyl-N-alkylcysteine dipeptide by an Ugi four-component condensation reaction is described. Through a reaction with a commercially available Fmoc-amino acid, an amine, an isocyanide, and a mercaptoacetaldehyde derivative, one step synthesis of dipeptides containing 20 kinds of natural amino acid residues was achieved, which avoided the problematic N-alkylation of S-tritylcysteine and its coupling reaction. The dipeptide was applied to the Fmoc-solid-phase peptide synthesis, and peptide thioesters were successfully obtained in high efficiency via N-alkylcysteine (NAC)-assisted thioesterification.
Collapse
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita 565-0871 , Japan
| | - Hironobu Hojo
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita 565-0871 , Japan
| |
Collapse
|
16
|
Yanase M, Nakatsu K, Cardos CJ, Konda Y, Hayashi G, Okamoto A. Cysteinylprolyl imide (CPI) peptide: a highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chem Sci 2019; 10:5967-5975. [PMID: 31360403 PMCID: PMC6566460 DOI: 10.1039/c9sc00646j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
A new crypto-thioester, cysteinylprolyl imide (CPI) peptide, offers a practical synthetic pathway and reliable reaction rate to be successfully applied to chemical protein synthesis.
Native chemical ligation (NCL) between the C-terminal peptide thioester and the N-terminal cysteinyl-peptide revolutionized the field of chemical protein synthesis. The difficulty of direct synthesis of the peptide thioester in the Fmoc method has prompted the development of crypto-thioesters that can be efficiently converted into thioesters. Cysteinylprolyl ester (CPE), which is an N–S acyl shift-driven crypto-thioester that relies on an intramolecular O–N acyl shift to displace the amide-thioester equilibrium, enabled trans-thioesterification and subsequent NCL in one pot. However, the utility of CPE is limited because of the moderate thioesterification rates and the synthetic complexity introduced by the ester group. Herein, we develop a new crypto-thioester, cysteinylprolyl imide (CPI), which replaces the alcohol leaving group of CPE with other leaving groups such as benzimidazolidinone, oxazolidinone, and pyrrolidinone. CPI peptides were efficiently synthesized by using standard Fmoc solid-phase peptide synthesis (SPPS) and subsequent on-resin imide formation. Screening of the several imide structures indicated that methyloxazolidinone-t-leucine (MeOxd-Tle) showed faster conversion into thioester and higher stability against hydrolysis under NCL conditions. Finally, by using CPMeOxd-Tle peptides, we demonstrated the chemical synthesis of affibody via N-to-C sequential, three-segment ligation and histone H2A.Z via convergent four-segment ligation. This facile and straightforward method is expected to be broadly applicable to chemical protein synthesis.
Collapse
Affiliation(s)
- Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Koki Nakatsu
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Charlane Joy Cardos
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yoshiki Konda
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Department of Biomolecular Engineering , Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan .
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|