1
|
Saeed A, Yang S, Zhao X, Wu X, Xu L, Zhao J, Zhao Y. Impact of Synthetic Variables on the Structural Diversity of Tb III-Carboxylate Frameworks: Gas Adsorption, Magnetism, and Organocatalysis Investigations. Inorg Chem 2024; 63:16337-16347. [PMID: 39158540 DOI: 10.1021/acs.inorgchem.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In this work, three unique TbIII-carboxylate frameworks with the formula {[Tb2(OH)2(H2O)2(abtc)]·2H2O}n (1), {[Tb2(abtc)1.5(H2O)3(DMA)]·H2O}n (2) and {[Tb3(abtc)2.5(H2O)4]·H3O}n (3), each displaying structural variations, have been successfully synthesized by the solvothermal reactions of Tb(NO3)3·6H2O with the azo-containing ligand 3,3',5,5'-azobenzene tetracarboxylic acid (H4abtc) under varying conditions. Detailed single-crystal X-ray diffraction (SC-XRD) analysis manifested a remarkable diversity in these structures, demonstrating various coordination patterns of TbIII-metal nodes with the carboxylate groups of the organic linker, which contributed to the generation of intricate three-dimensional (3D) coordination networks with remarkable chemical resistance. Furthermore, frameworks 2 and 3, characterized by porous networks containing two and three independent TbIII-metal nodes, respectively, were both demonstrated to be efficient heterogeneous catalysts toward the cyanosilylation of imines under mild conditions with excellent reusability. In addition, direct current (Dc) magnetic susceptibility measurements conducted on frameworks 1, 2, and 3 indicated that there were obvious antiferromagnetic interactions among the TbIII-metal nodes, which suggests the involvement of intricate intra- and intertrimer exchange channels, adding another fascinating dimension to their physical properties.
Collapse
Affiliation(s)
- Aasim Saeed
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shun Yang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinyang Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xue Wu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Xu
- Jiangsu Key Lab of Data Engineering and Knowledge Service, Key Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
de Abrantes PG, de Abrantes PG, Ferreira JMGDO, Vale JA. NaCl as an eco-friendly and efficient promoter for Knoevenagel condensation at room temperature. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2155836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Juliana Alves Vale
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
3
|
Massi L, Gal JF, Dunach E. Metal triflates as catalysts in organic synthesis: characterization of their Lewis acidity by mass spectrometry. Chempluschem 2022; 87:e202200037. [DOI: 10.1002/cplu.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Lionel Massi
- Universite Cote d'Azur Institut de Chimie de Nice FRANCE
| | | | - Elisabet Dunach
- CNRS Institut de Chimie de Nice Parc ValroseFaculte Sciences 06108 Nice cedex 2 FRANCE
| |
Collapse
|
4
|
Kim KH, Jin X, Ji A, Aui A, Mba-Wright M, Yoo CJ, Choi JW, Ha JM, Kim CS, Yoo CG, Choi JW. Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:41-48. [PMID: 35306464 DOI: 10.1016/j.wasman.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The efficient strategy for waste conversion and resource recovery is of great interest in the sustainable bioeconomy context. This work reports on the catalytic upcycling of waste corrugated cardboard (WCC) into lactic acid using lanthanide triflates catalysts. WCC, a primary contributor to municipal solid wastes, has been viewed as a feedstock for producing a wide range of renewable products. Hydrothermal conversion of WCC was carried out in the presence of several lanthanide triflates. The reaction with erbium(III) triflate (Er(OTf)3) and ytterbium(III) triflate (Yb(OTf)3) resulted in high lactic acid yields, 65.5 and 64.3 mol%, respectively. In addition, various monomeric phenols were readily obtained as a co-product stream, opening up opportunities in waste management and resource recovery. Finally, technoeconomic analysis was conducted based on the experimental results, which suggests a significant economic benefit of chemocatalytic upcycling of WCC into lactic acid.
Collapse
Affiliation(s)
- Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Xuanjun Jin
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Anqi Ji
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Alvina Aui
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Mark Mba-Wright
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Chun-Jae Yoo
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae-Wook Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jeong-Myeong Ha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
5
|
Gogoi MP, Vanjari R, Prabagar B, Yang S, Dutta S, Mallick RK, Gandon V, Sahoo AK. Yb(iii)-catalysed syn-thioallylation of ynamides. Chem Commun (Camb) 2021; 57:7521-7524. [PMID: 34236069 DOI: 10.1039/d1cc02611a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a syn-thioallylation of ynamides incorporating a sulfide moiety at the α-position and an allyl group at the β-position of the ynamide. The transformation is successful under ytterbium(iii)-catalysis, providing access to highly substituted thioamino-skipped-dienes with broad substrate scope. Thus, tetrasubstituted olefins (with four different functional groups: amide, phenyl, thioaryl/alkyl, and allyl on the carbon centers) are made in a single step from readily accessible ynamides, preserving complete atom economy. The reaction can be extended to the synthesis of selenoamino dienes by ynamide syn-selenoallylation. DFT studies and control experiments provide insight into the reaction mechanism.
Collapse
|
6
|
Vendramini PH, Zeoly LA, Cormanich RA, Buehl M, Eberlin MN, Ferreira BRV. Unveiling the mechanism of N-methylation of indole with dimethylcarbonate using either DABCO or DBU as catalyst. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4707. [PMID: 33590578 DOI: 10.1002/jms.4707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Depending on the catalyst used, N-methylation of indole with dimethylcarbonate (DMC)-an environmentally friendly alkylation agent-yields different products. With 1,4-diazabicyclo[2.2.2]octane (DABCO), the reaction forms only N-methylated indole, but with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), both N-methylated and N-methoxycarbonylated indole are formed. Using direct ESI(+)-MS monitoring to collect actual snapshots of the changing ionic composition of the reaction solution, we report on the interception and characterization of key intermediates for such reactions. Although a mechanism has been proposed with methoxycarbonylated base as the key intermediate for both DBU and DABCO, the ESI(+)-MS data and B3LYP-D3/6-311+G** calculations suggest that the reaction of DMC with indole under either DABCO or DBU catalysis follows contrasting mechanisms.
Collapse
Affiliation(s)
- Pedro H Vendramini
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Lucas A Zeoly
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Rodrigo A Cormanich
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Michael Buehl
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Marcos N Eberlin
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
- MackMass Laboratory, School of Engineering-PPGEMN, Mackenzie Presbyterian University, Rua da Consolação, 896, São Paulo, São Paulo, 01302-907, Brazil
| | - Bruno R V Ferreira
- Federal Institute of Education, Science and Technology of Northern Minas Gerais-IFNMG, PO Box 71, Salinas, Minas Gerais, 39560-000, Brazil
| |
Collapse
|
7
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
8
|
Nguyen KC, Wang P, Lindsey JS. Study of conditions for streamlined assembly of a model bacteriochlorophyll from two dihydrodipyrrin halves. NEW J CHEM 2021. [DOI: 10.1039/d0nj04855k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knoevenagel condensation followed by double-ring closure (Nazarov cyclization, electrophilic aromatic substitution, elimination of methanol) and optional zinc insertion smoothly afford models of the native bacteriochlorophylls.
Collapse
Affiliation(s)
| | - Pengzhi Wang
- Department of Chemistry North Carolina State University Raleigh
- USA
| | | |
Collapse
|
9
|
Penna TC, Cervi G, Rodrigues-Oliveira AF, Yamada BD, Lima RZC, Menegon JJ, Bastos EL, Correra TC. Development of a photoinduced fragmentation ion trap for infrared multiple photon dissociation spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8635. [PMID: 31677291 DOI: 10.1002/rcm.8635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Methods for isomer discrimination by mass spectroscopy are of increasing interest. Here we describe the development of a three-dimensional ion trap for infrared multiple photon dissociation (IRMPD) spectroscopy that enables the acquisition of the infrared spectrum of selected ions in the gas phase. This system is suitable for the study of a myriad of chemical systems, including isomer mixtures. METHODS A modified three-dimensional ion trap was coupled to a CO2 laser and an optical parametric oscillator/optical parametric amplifier (OPO/OPA) system operating in the range 2300 to 4000 cm-1 . Density functional theory vibrational frequency calculations were carried out to support spectral assignments. RESULTS Detailed descriptions of the interface between the laser and the mass spectrometer, the hardware to control the laser systems, the automated system for IRMPD spectrum acquisition and data management are presented. The optimization of the crystal position of the OPO/OPA system to maximize the spectroscopic response under low-power laser radiation is also discussed. CONCLUSIONS OPO/OPA and CO2 laser-assisted dissociation of gas-phase ions was successfully achieved. The system was validated by acquiring the IRMPD spectra of model species and comparing with literature data. Two isomeric alkaloids of high economic importance were characterized to demonstrate the potential of this technique, which is now available as an open IRMPD spectroscopy facility in Brazil.
Collapse
Affiliation(s)
- Tatiana C Penna
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Gustavo Cervi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - André F Rodrigues-Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Bruno D Yamada
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Rafael Z C Lima
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Jair J Menegon
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Thiago C Correra
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Houthuijs KJ, Martens J, Arranja AG, Berden G, Nijsen JFW, Oomens J. Characterization of holmium(iii)-acetylacetonate complexes derived from therapeutic microspheres by infrared ion spectroscopy. Phys Chem Chem Phys 2020; 22:15716-15722. [PMID: 32618970 DOI: 10.1039/d0cp01890b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microspheres containing radioactive 166holmium-acetylacetonate are employed in emerging radionuclide therapies for the treatment of malignancies. At the molecular level, details on the coordination geometries of the Ho complexes are however elusive. Infrared ion spectroscopy (IRIS) was used to characterize several 165Ho-acetylacetonate complexes derived from non-radioactive microspheres. The coordination geometry of four distinct ionic complexes were fully assigned by comparison of their measured IR spectra with spectra calculated at the density functional theory (DFT) level. The coordination of each acetylacetonate ligand is dependent on the presence of other ligands, revealing an asymmetric chelation motif in some of the complexes. A fifth, previously unknown constituent of the microspheres was identified as a coordination complex containing an acetic acid ligand. These results pave the way for IRIS-based identification of microsphere constituents upon neutron activation of the metal center.
Collapse
Affiliation(s)
- Kas J Houthuijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Villo P, Dalla-Santa O, Szabó Z, Lundberg H. Kinetic Analysis as an Optimization Tool for Catalytic Esterification with a Moisture-Tolerant Zirconium Complex. J Org Chem 2020; 85:6959-6969. [PMID: 32352291 PMCID: PMC7304901 DOI: 10.1021/acs.joc.0c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
This work describes the use of kinetics
as a tool for rational
optimization of an esterification process with down to equimolar ratios
of reagents using a recyclable commercially available zirconocene
complex in catalytic amounts. In contrast to previously reported group
IV metal-catalyzed esterification protocols, the work presented herein
circumvents the use of water scavengers and perfluorooctane sulfonate
(PFOS) ligands. Insights into the operating mechanism are presented.
Collapse
Affiliation(s)
- Piret Villo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| | - Oscar Dalla-Santa
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| | - Zoltán Szabó
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| | - Helena Lundberg
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| |
Collapse
|
12
|
M Ribeiro FW, Rodrigues-Oliveira AF, C Correra T. Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates. J Phys Chem A 2019; 123:8179-8187. [PMID: 31483645 DOI: 10.1021/acs.jpca.9b05065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Benzoxazine formation is a fundamental step in the preparation of polybenzoxazine resins, and a detailed description of the mechanism governing the formation of benzoxazine and side products is vital for improving the properties and performance of these resins. Determination of the nature and properties of reaction intermediates is not trivial. Therefore, a Mannich-type condensation of aniline, formaldehyde, and phenol was evaluated as a potential method to form benzoxazine. Coupling positive mode electrospray ionization mass spectrometry (ESI(+)-MS) with infrared multiple photon dissociation (IRMPD) spectroscopy allowed unambiguous determination of an iminium-based mechanism and the direct observation of iminium intermediates. The benzoxazine formation mechanism was indirectly confirmed by the observation of side products that are relevant to the polymerization step, and directly confirmed by the identification of four distinct reaction intermediates that were completely characterized by IRMPD spectroscopy. The benzoxazine monomer was also shown to undergo isomerization under standard ESI-MS analysis conditions, suggesting the presence of a mixture of three isomers during their usual ESI-MS analysis.
Collapse
Affiliation(s)
- Francisco W M Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| | - André F Rodrigues-Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| | - Thiago C Correra
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| |
Collapse
|