1
|
Rao K, Sharma A, Rathod GK, Barahdia AS, Jain R. Aminocarbonylation using CO surrogates. Org Biomol Chem 2025; 23:980-991. [PMID: 39666374 DOI: 10.1039/d4ob01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aminocarbonylation reactions play a critical role in the synthesis of amides. Traditional aminocarbonylation processes often rely on carbon monoxide (CO) gas, a highly toxic and challenging reagent to handle. Recent advancements in CO surrogates address these challenges. This review looks at the various CO substitutes used in aminocarbonylation reactions. These include metal carbonyls, acids, formates, chloroform, and others that release CO. Use of CO surrogates not only improves safety but also broadens the substrate scope and operational simplicity of the aminocarbonylation reactions. This review provides a summary of recent progress made in aminocarbonylation reactions using different CO surrogates. We discuss key methodologies, catalytic systems, and mechanistic insights, highlighting the efficiency and versatility of CO surrogates in amide bond formation.
Collapse
Affiliation(s)
- Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Aman S Barahdia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
2
|
Gorachand B, Surendra Reddy G, Ramachary DB. Direct Organocatalytic Chemoselective Synthesis of Pharmaceutically Active 1,2,3-Triazoles and 4,5'-Bitriazoles. ACS ORGANIC & INORGANIC AU 2024; 4:534-544. [PMID: 39371323 PMCID: PMC11450731 DOI: 10.1021/acsorginorgau.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/08/2024]
Abstract
Carbonyl-containing 1,4,5-trisubstituted- and 1,4-disubstituted-1,2,3-triazoles are well-known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free synthesis has always remained challenging, as no comprehensive protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various carbonyl-containing 1,4,5-trisubstituted- and 1,4-disubstituted-1,2,3-triazoles and unsymmetrical 4,5'-bitriazoles with high yields and chemo-/regioselectivity from the library of 2,4-diketoesters and azides in a sequential one-pot manner through the combination of organocatalytic enolization, in situ [3 + 2]-cycloaddition, and hydrolysis reactions. The commercial availability of the starting materials/catalysts, diverse substrate scope, performance in a one-pot manner, chemo-/regioselectivity of organo-click reaction, quick synthesis of unsymmetrical 4,5'-bitriazoles, a large number of synthetic applications, and numerous medicinal applications of carbonyl-containing 1,2,3-triazoles are the key attractions of this metal-free organo-click work.
Collapse
Affiliation(s)
- Badaraita Gorachand
- Catalysis Laboratory, School
of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | - Gundam Surendra Reddy
- Catalysis Laboratory, School
of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | | |
Collapse
|
3
|
Huang TY, Djugovski M, Adhikari S, Manning DL, Roy S. Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides. Beilstein J Org Chem 2023; 19:1545-1554. [PMID: 37822920 PMCID: PMC10562644 DOI: 10.3762/bjoc.19.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Here, we report the first transition-metal-free defluorinative cycloaddition of gem-difluoroalkenes with organic azides in morpholine as a solvent to construct fully decorated morpholine-substituted 1,2,3-triazoles. Mechanistic studies revealed the formation of an addition-elimination intermediate of morpholine and gem-difluoroalkenes prior to the triazolization reaction via two plausible pathways. Attractive elements include the regioselective and straightforward direct synthesis of fully substituted 1,2,3-triazoles, which are otherwise difficult to access, from readily available starting materials.
Collapse
Affiliation(s)
- Tzu-Yu Huang
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mario Djugovski
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Sweta Adhikari
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Destinee L Manning
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Sudeshna Roy
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
4
|
Teixeira WKO, de Albuquerque DY, Zukerman-Schpector J, Seckler D, Rampon DS, Schwab RS. Copper-Mediated Intramolecular Interrupted CuAAC Selanylation. J Org Chem 2023. [PMID: 37467464 DOI: 10.1021/acs.joc.2c02893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
We, herein, describe a copper-mediated domino CuAAC intramolecular selanylation for the synthesis of unprecedented fused benzo[4,5][1,3]selenazolo[3,2-c][1,2,3]triazoles from 1,2-bis(2-azidoaryl)diselenides and terminal alkynes under microwave irradiation. This is the seminal method for the synthesis of these fused heterocycles, and it proceeds under mild conditions, tolerates several functional groups, and can be carried out using environmentally benign solvents such as dimethyl carbonate. This transformation has been successfully extended to TMS-protected alkynes and to bioactive alkynes. A plausible reaction mechanism is proposed based on several control experiments and previous reports.
Collapse
Affiliation(s)
- Wystan K O Teixeira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| | - Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| | - Julio Zukerman-Schpector
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| | - Diego Seckler
- Laboratory of Polymers and Catalysis (LaPoCa), Departamento de Química, Universidade Federal do Paraná - UFPR, P. O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Daniel S Rampon
- Laboratory of Polymers and Catalysis (LaPoCa), Departamento de Química, Universidade Federal do Paraná - UFPR, P. O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Ricardo S Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos 13565-905, São Paulo, Brazil
| |
Collapse
|
5
|
A Combination of Biocompatible Room Temperature Ionic Liquid and Supported Palladium Nanoparticles Catalyst for Aminocarbonylation and Alkoxycarbonylation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Rathod GK, Jain R. Palladium-Catalyzed Aminocarbonylation of (Hetero)aryl Iodides with α-Amino Acid Esters as Nucleophiles. J Org Chem 2022; 87:8005-8016. [PMID: 35657297 DOI: 10.1021/acs.joc.2c00635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report palladium-catalyzed aminocarbonylation of (hetero)aryl iodides with α-amino acid esters as nucleophiles. The synthesized N-capped α-amino acids are biologically important building blocks. The mild conditions provide products with high enantioselectivity at 80 °C in 35 min. The reactions are performed under air in a sealed vessel using chloroform as an in situ CO source. For the first time, regioselective carbonylation of histidine is also presented.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
7
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
8
|
Yano de Albuquerque D, Teixeira WKO, Sacramento MD, Alves D, Santi C, Schwab RS. Palladium-Catalyzed Carbonylative Synthesis of Aryl Selenoesters Using Formic Acid as an Ex Situ CO Source. J Org Chem 2021; 87:595-605. [PMID: 34962405 DOI: 10.1021/acs.joc.1c02608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new catalytic protocol for the synthesis of selenoesters from aryl iodides and diaryl diselenides has been developed, where formic acid was employed as an efficient, low-cost, and safe substitute for toxic and gaseous CO. This protocol presents a high functional group tolerance, providing access to a large family of selenoesters in high yields (up to 97%) while operating under mild reaction conditions, and avoids the use of selenol which is difficult to manipulate, easily oxidizes, and has a bad odor. Additionally, this method can be efficiently extended to the synthesis of thioesters with moderate-to-excellent yields, by employing for the first time diorganyl disulfides as precursors.
Collapse
Affiliation(s)
- Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Wystan K O Teixeira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Manoela do Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06123 Perugia, Italy
| | - Ricardo S Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
9
|
Shiri P, Amani AM, Mayer-Gall T. A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J Org Chem 2021; 17:1600-1628. [PMID: 34354770 PMCID: PMC8290111 DOI: 10.3762/bjoc.17.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse strategies for the efficient and attractive synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and industry. The current review aims to cover a wide literature survey of numerous synthetic strategies. Recent reports (2017–2021) in the field of 1,4,5-trisubstituted 1,2,3-triazoles are emphasized in this current review.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas Mayer-Gall
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.,Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
| |
Collapse
|
10
|
Silva EM, Albuquerque DY, Zukerman‐Schpector J, Schwab RS. Development of a Novel Three‐step Sonogashira Cross Coupling/Deacetonation/Cycloaddition Protocol for the Synthesis of 4‐aryl‐1,2,3‐triazoles Using 2‐methyl‐3‐butyn‐2‐ol as a Versatile Acetylene Surrogate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Everton M. Silva
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem) Departamento de Química Universidade Federal de São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos São Paulo 13565-905 Brazil
| | - Danilo Yano Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem) Departamento de Química Universidade Federal de São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos São Paulo 13565-905 Brazil
| | - Julio Zukerman‐Schpector
- Departamento de Química Universidade Federal de São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos São Paulo 13565-905 Brazil
| | - Ricardo S. Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem) Departamento de Química Universidade Federal de São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos São Paulo 13565-905 Brazil
| |
Collapse
|
11
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
12
|
Caracelli I, Zukerman-Schpector J, Kwong HC, Tiekink ERT. Methyl 3-[(1-benzyl-4-phenyl-1 H-1,2,3-triazol-5-yl)formamido]-propano-ate: crystal structure, Hirshfeld surface analysis and computational chemistry. Acta Crystallogr E Crystallogr Commun 2020; 76:1051-1056. [PMID: 32695451 PMCID: PMC7336772 DOI: 10.1107/s2056989020007380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022]
Abstract
The title compound, C20H20N4O3, is constructed about a tri-substituted 1,2,3-triazole ring, with the substituent at one C atom flanked by the C and N atoms being a substituted amide group, and with the adjacent C and N atoms bearing phenyl and benzyl groups, respectively; the dihedral angle between the pendant phenyl rings is 81.17 (12)°, indicative of an almost orthogonal disposition. In the crystal, pairwise amide-N-H⋯O(carbon-yl) hydrogen bonds lead to a centrosymmetric dimer incorporating methyl-ene-C-H⋯π(benzene) inter-actions. The dimers are linked into a supra-molecular layer in the ab plane via methyl-ene-C-H⋯N(azo) and benzene-C-H⋯O(amide) inter-actions; the layers stack along the c-axis direction without directional inter-actions between them. The above-mentioned inter-molecular contacts are apparent in the analysis of the calculated Hirshfeld surface, which also provides evidence for short inter-layer H⋯C contacts with a significant dispersion energy contribution.
Collapse
Affiliation(s)
- Ignez Caracelli
- Departmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Julio Zukerman-Schpector
- Laboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Huey Chong Kwong
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Tatevosyan SS, Kotovshchikov YN, Latyshev GV, Erzunov DA, Sokolova DV, Beletskaya IP, Lukashev NV. A Route to Triazole-Fused Sultams via Metal-Free Base-Mediated Cyclization of Sulfonamide-Tethered 5-Iodotriazoles. J Org Chem 2020; 85:7863-7876. [PMID: 32438811 DOI: 10.1021/acs.joc.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient direct approach to triazole-fused sultams has been developed. The key step of the proposed strategy is base-mediated cyclization of sulfonamide-tethered 5-iodo-1,2,3-triazoles which are readily available via an improved protocol for Cu-catalyzed 1,3-dipolar cycloaddition. The annulation of the sultam fragment to the triazole ring proceeds smoothly under transition-metal-free conditions in the presence of Cs2CO3 in dioxane at 100 °C and affords fused heterocycles in high yields up to 99%. The favorability of an SNAr-like mechanism for the cyclization was supported by DFT calculations. The applicability of the developed procedure to modification of natural compounds was demonstrated by preparation of a deoxycholic acid derivative.
Collapse
Affiliation(s)
- Stepan S Tatevosyan
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry A Erzunov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Darina V Sokolova
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya str., Moscow 117198, Russia.,N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|