1
|
Dalton AB, Wingen LM, Nizkorodov SA. Isomeric Identification of the Nitroindole Chromophore in Indole + NO 3 Organic Aerosol. ACS PHYSICAL CHEMISTRY AU 2024; 4:568-574. [PMID: 39346612 PMCID: PMC11428327 DOI: 10.1021/acsphyschemau.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
Oxidation of indole by nitrate radical (NO3) was previously proposed to form nitroindole, largely responsible for the brown color of indole secondary organic aerosol (SOA). As there are seven known nitroindole isomers, we used chromatographic separation to show that a single nitroindole isomer is produced in the indole + NO3 reaction and definitively assigned it to 3-nitroindole by comparison with chromatograms of nitroindole standards. Mass spectra of aerosolized 3-nitroindole particles were recorded with an aerosol mass spectrometer and directly compared to mass spectra of SOA from smog chamber oxidation of indole by NO3 in order to help identify peaks unique to nitroindole (m/z 162, 132, and 116). Quantum chemical calculations were done to determine the energetics of hypothesized indole + NO3 intermediates and products. The combination of these data suggests a mechanism, wherein a hydrogen atom is first abstracted from the N-H bond in indole, followed by isomerization to a carbon-centered radical in the 3-position and followed by addition of NO2. Alternative mechanisms involving a direct abstraction of a H atom from a C-H bond or a NO3 addition to the ring are predicted to be energetically unfavorable from large barriers for the initial reaction steps.
Collapse
Affiliation(s)
- Avery B Dalton
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
da S. Santos B, Finelli FG, Spring DR. Photoredox C(2)-Arylation of Indole- and Tryptophan-Containing Biomolecules. Org Lett 2024; 26:4065-4070. [PMID: 38696591 PMCID: PMC11194849 DOI: 10.1021/acs.orglett.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024]
Abstract
We introduce a novel and straightforward methodology for photoredox arylation of an indole scaffold using aryldiazonium salts under mild and metal-free conditions. Our approach enables the regioselective and chemoselective introduction of several aryl groups to the C(2) position of indoles and tryptophan, even in competition with other amino acids. This approach extends to the late-stage functionalization of peptides and lysozyme, heralding the unprecedented arylation of tryptophan residues in wild-type proteins and offering broad utility in chemical biology.
Collapse
Affiliation(s)
- Bruno
M. da S. Santos
- Instituto
de Pesquisas de Produtos Naturais, Universidade
Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Fernanda G. Finelli
- Instituto
de Pesquisas de Produtos Naturais, Universidade
Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - David R. Spring
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Lee JC, Cuthbertson JD, Mitchell NJ. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Org Lett 2023; 25:5459-5464. [PMID: 37462428 PMCID: PMC10391624 DOI: 10.1021/acs.orglett.3c01795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Across eukaryotic proteomes, tryptophan is the least abundant of the 20 canonical amino acids, which makes it an ideal chemical handle for the late-stage functionalization of peptide and protein scaffolds with minimal production of undesired isoforms. Herein, we report the photocatalytic C2-alkylation of tryptophan using bromodifluoroacetate/acetamide-derived radical precursors. This rapid visible-light-mediated reaction is additive-free, operationally simple, and tolerates diverse functionality. We demonstrate the late-stage modification of a variety of complex peptides, including examples of biological significance.
Collapse
Affiliation(s)
- Joanna C Lee
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - James D Cuthbertson
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Page CG, Cao J, Oblinsky DG, MacMillan SN, Dahagam S, Lloyd RM, Charnock SJ, Scholes GD, Hyster TK. Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes. J Am Chem Soc 2023; 145:11866-11874. [PMID: 37199445 PMCID: PMC10859869 DOI: 10.1021/jacs.3c03607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.
Collapse
Affiliation(s)
- Claire G. Page
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jingzhe Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel G. Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Shiva Dahagam
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Ruth M. Lloyd
- Prozomix. Building 4, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HN (UK)
| | - Simon J. Charnock
- Prozomix. Building 4, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HN (UK)
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
5
|
Hyster T, Page C, Cao J, Oblinsky D, MacMillan S, Dahagam S, Lloyd R, Charnock S, Scholes G. Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes. RESEARCH SQUARE 2023:rs.3.rs-2602958. [PMID: 36865242 PMCID: PMC9980219 DOI: 10.21203/rs.3.rs-2602958/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. 1,2 Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes, 3-5 however, the selectivity of existing methods is modest and primarily governed by substrate electronic properties. 6,7 Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective 'ene'-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground state change transfer in the CT complex. Mechanistic studies on a C2 selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8 selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective reactions where small molecule catalysts struggle to alter selectivity.
Collapse
|
6
|
K
2
S
2
O
8
‐Glucose‐Mediated Metal‐Free Oxidative Trifluoromethylation of Indoles with Langlois’ Reagent on the C2 Position. ChemistrySelect 2023. [DOI: 10.1002/slct.202203939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Paul A, Sengupta A, Yadav S. Organophotoredox-Catalyzed Cross-Dehydrogenative Sulfonamidation of Indoles and Other Heterocycles. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aditya Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
8
|
Go SY, Chung H, Shin SJ, An S, Youn JH, Im TY, Kim JY, Chung TD, Lee HG. A Unified Synthetic Strategy to Introduce Heteroatoms via Electrochemical Functionalization of Alkyl Organoboron Reagents. J Am Chem Soc 2022; 144:9149-9160. [PMID: 35575552 DOI: 10.1021/jacs.2c03213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on systematic electrochemical analysis, an integrated synthetic platform of C(sp3)-based organoboron compounds was established for the introduction of heteroatoms. The electrochemically mediated bond-forming strategy was shown to be highly effective for the functionalization of sp3-hybridized carbon atoms with significant steric hindrance. Moreover, virtually all the nonmetallic heteroatoms could be utilized as reaction partners using one unified protocol. The observed reactivity stems from the two consecutive single-electron oxidations of the substrate, which eventually generates an extremely reactive carbocation as the key intermediate. The detailed reaction profile could be elucidated through multifaceted electrochemical studies. Ultimately, a new dimension in the activation strategies for organoboron compounds was accomplished through the electrochemically driven reaction development.
Collapse
Affiliation(s)
- Su Yong Go
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Hyunho Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Samuel Jaeho Shin
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sohee An
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ju Hyun Youn
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Tae Yeong Im
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do 16229 Republic of Korea
| | - Hong Geun Lee
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials. J Am Chem Soc 2022; 144:3685-3695. [PMID: 35189683 DOI: 10.1021/jacs.1c13032] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dearomative dicarboxylation of stable heteroaromatics using CO2 is highly challenging but represents a very powerful method for producing synthetically useful dicarboxylic acids, which can potentially be employed as intermediates of biologically active molecules such as natural products and drug leads. However, these types of transformations are still underdeveloped, and concise methodologies with high efficiency (e.g., high yield and high selectivity for dicarboxylations) have not been reported. We herein describe a new electrochemical protocol using the CO2 radical anion (E1/2 of CO2 = -2.2 V in DMF and -2.3 V in CH3CN vs SCE) that produces unprecedented trans-oriented 2,3-dicarboxylic acids from N-Ac-, Boc-, and Ph-protected indoles that exhibit highly negative reduction potentials (-2.50 to -2.94 V). On the basis of the calculated reduction potentials, N-protected indoles with reduction potentials up to -3 V smoothly undergo the desired dicarboxylation. Other heteroaromatics, including benzofuran, benzothiophene, electron-deficient furans, thiophenes, 1,3-diphenylisobenzofuran, and N-Boc-pyrazole, also exhibit reduction potentials more positive than -3 V and served as effective substrates for such dicarboxylations. The dicarboxylated products thus obtained can be derivatized into useful synthetic intermediates for biologically active compounds in few steps. We also show how the dearomative monocarboxylation can be achieved selectively by choice of the electrolyte, solvent, and protic additive; this strategy was then applied to the synthesis of an octahydroindole-2-carboxylic acid (Oic) derivative, which is a useful proline analogue.
Collapse
Affiliation(s)
- Yong You
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
10
|
Abstract
A total synthesis of (-)-strempeliopine is disclosed that enlists a powerful SmI2-mediated and BF3·OEt2-initiated dearomative transannular radical cyclization onto an indole by an N-acyl α-aminoalkyl radical that is derived by single electron reduction of an in situ generated iminium ion for formation of a quaternary center and the strategic C19-C2 bond in its core structure.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|