1
|
Degórska O, Szada D, Jesionowski T, Zdarta J. A biocatalytic approach for resolution of 3-hydroxy-3-phenylpropanonitrile with the use of immobilized enzymes stabilized with ionic liquids. Comput Struct Biotechnol J 2023; 21:1593-1597. [PMID: 36874162 PMCID: PMC9974985 DOI: 10.1016/j.csbj.2023.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Due to the growing importance of synthesizing active pharmaceutical ingredients (APIs) in enantiomerically pure form, new methods of asymmetric synthesis are being sought. Biocatalysis is a promising technique that can lead to enantiomerically pure products. In this study, lipase from Pseudomonas fluorescens, immobilized on modified silica nanoparticles, was used for the kinetic resolution (via transesterification) of a racemic mixture of 3-hydroxy-3-phenylpropanonitrile (3H3P), where the obtaining of a pure (S)-enantiomer of 3H3P is a crucial step in the fluoxetine synthesis pathway. For additional stabilization of the enzyme and enhanced process efficiency, ionic liquids (ILs) were used. It was found that the most suitable IL was [BMIM]Cl; a process efficiency of 97.4 % and an enantiomeric excess (ee%) of 79.5 % were obtained when 1 % (w/v) of that IL in hexane was applied and the process was catalyzed by lipase immobilized on amine-modified silica.
Collapse
|
2
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
3
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Li Z, Yang H, Liu J, Huang Z, Chen F. Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018-2020). CHEM REC 2021; 21:1611-1630. [PMID: 33835705 DOI: 10.1002/tcr.202100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
With the rapid development of genomic DNA sequencing, recombinant DNA expression, and protein engineering, biocatalysis has been increasingly and widely adopted in the synthesis of pharmaceuticals, bioactive molecules, fine chemicals, and agrochemicals. In this review, we have summarized the most recent advances achieved (2018-2020) in the research area of ketoreductase (KRED)-catalyzed asymmetric synthesis of chiral secondary alcohol intermediates to pharmaceuticals and bioactive molecules. In the first part, synthesis of chiral alcohols with one stereocenter through the bioreduction of four different ketone classes, namely acyclic aliphatic ketones, benzyl or phenylethyl ketones, cyclic aliphatic ketones, and aryl ketones, is discussed. In the second part, KRED-catalyzed dynamic reductive kinetic resolution and reductive desymmetrization are presented for the synthesis of chiral alcohols with two contiguous stereocenters.
Collapse
Affiliation(s)
- Zhining Li
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Haidi Yang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Jinyao Liu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
|
6
|
One-pot two-step chemoenzymatic deracemization of allylic alcohols using laccases and alcohol dehydrogenases. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Zhou J, Xu G, Ni Y. Stereochemistry in Asymmetric Reduction of Bulky–Bulky Ketones by Alcohol Dehydrogenases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| |
Collapse
|
8
|
Hensienne R, Cusson JP, Chénard É, Hanessian S. Catalytic Lewis and Brønsted acid syn-diastereoselective benzylic substitutions of α-hydroxy- β-nitro- and α-hydroxy- β-azido-alkyl arenes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of alkyl and alkenyl p-methoxy arenes containing α,β-disubstituted diamino and amino alcohol groups were synthesized from β-nitro and β-azido benzylic alcohols in the presence of AuCl3 as catalyst. The formation of predominantly syn-disubstituted products were rationalized on the basis of mechanistic considerations and transition state models relying on A1,3-allylic strain. The products could have utility in the design of medicinally relevant compounds and as chiral ligands for asymmetric catalysis. A new synthesis of (+)-sertraline (Zoloft) was achieved.
Collapse
Affiliation(s)
- Raphaël Hensienne
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-Philippe Cusson
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Étienne Chénard
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Elorriaga D, Rodríguez-Álvarez MJ, Ríos-Lombardía N, Morís F, Presa Soto A, González-Sabín J, Hevia E, García-Álvarez J. Combination of organocatalytic oxidation of alcohols and organolithium chemistry (RLi) in aqueous media, at room temperature and under aerobic conditions. Chem Commun (Camb) 2020; 56:8932-8935. [DOI: 10.1039/d0cc03768k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalysis and highly-polar s-block organometallic chemistry (RLi) work together in water, under air and at room temperature for the selective and ultrafast synthesis of tertiary alcohols.
Collapse
Affiliation(s)
- David Elorriaga
- Departamento de Química Orgánica e Inorgánica
- (IUQOEM) Facultad de Química
- Universidad de Oviedo
- Oviedo
- Spain
| | | | | | | | - Alejandro Presa Soto
- Departamento de Química Orgánica e Inorgánica
- (IUQOEM) Facultad de Química
- Universidad de Oviedo
- Oviedo
- Spain
| | | | - Eva Hevia
- Department für Chemie und Biochemie
- Universität Bern
- Bern
- Switzerland
| | - Joaquín García-Álvarez
- Departamento de Química Orgánica e Inorgánica
- (IUQOEM) Facultad de Química
- Universidad de Oviedo
- Oviedo
- Spain
| |
Collapse
|