1
|
Tigreros A, Bedoya-Malagón C, Valencia A, Núñez-Portela M, Portilla J. Photophysical and anion sensing properties of a triphenylamine-dioxaborinine trimeric compound. RSC Adv 2023; 13:1757-1764. [PMID: 36712638 PMCID: PMC9828043 DOI: 10.1039/d2ra07498b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Herein, we report the synthesis and photophysical characterization of the novel tris(4-(2,2-difluoro-6-methyl-2H-1λ3,3,2λ4-dioxaborinin-4-yl)phenyl)amine trimeric probe (A2) via the reaction between triphenylamine (1), acetic anhydride, and BF3·OEt2 implying the twelve new bond formation in a one-pot manner. This highly fluorescent compound in solution (φ up to 0.91 at 572 nm) and solid state (φ = 0.24 at 571 nm) showed a better solvatofluorochromism than its analog monomeric A1 due to symmetry-broken charge transfer, which is consistent with high solvent dipolarity (SdP) response in Catalán's multiparametric regression. Notably, A2 had a high sensibility and selectivity for CN- or F- in solution (LODCN-/F- = 0.18/0.70 μM), and CN- can be discriminated from F- by the reaction of A2 with 3.0 equiv. of CN-. In addition, A2 was impregnated on filter paper to prepare test strips that were applied to naked-eye qualitative sensing of CN- or F-. Finally, the octupolar system in A2 allows for better action of two-photon excitation cross-section values when compared with that of the dipolar structure in A1. These findings provide further information for the design of new efficient two-photon absorption dyes.
Collapse
Affiliation(s)
- Alexis Tigreros
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los AndesCarrera 1 No. 18A-10Bogotá 111711Colombia
| | - Camilo Bedoya-Malagón
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Alejandra Valencia
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Mayerlin Núñez-Portela
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los AndesCarrera 1 No. 18A-10Bogotá 111711Colombia
| |
Collapse
|
2
|
Keleş E, Aydıner B, Seferoğlu Z. Nucleophilic Approach to Cyanide Sensing by Chemosensors. Curr Org Synth 2023; 20:61-76. [PMID: 34939545 DOI: 10.2174/1570179419666211221163435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023]
Abstract
Cyanide anion has wide use in industrial areas; however, it has a high toxic effect on the environment as waste. Moreover, plant seeds contain cyanide that is often consumed by human beings. Therefore, many studies are carried out to determine cyanide. Especially, optical sensors showing colorimetric and fluorimetric changes have been of considerable interest due to their easy, cheap, and fast responses. This review discusses recent developments in the colorimetric and fluorimetric detection of cyanide by nucleophilic addition to different types of receptors via the chemodosimeter approach. The sensitivity and selectivity of the sensors have been reviewed for changes in absorption and fluorescence, naked-eye detection, real sample application, and detection limits when interacting with cyanide.
Collapse
Affiliation(s)
- Ergin Keleş
- Department of Chemistry, Faculty of Science, Gazi University, 06560, Ankara, Turkey
- Technological Dyes and Materials Application and Research Center (TEBAM), Gazi University, 06560, Ankara, Turkey
| | - Burcu Aydıner
- Department of Chemistry, Faculty of Science, Gazi University, 06560, Ankara, Turkey
- Technological Dyes and Materials Application and Research Center (TEBAM), Gazi University, 06560, Ankara, Turkey
| | - Zeynel Seferoğlu
- Department of Chemistry, Faculty of Science, Gazi University, 06560, Ankara, Turkey
- Technological Dyes and Materials Application and Research Center (TEBAM), Gazi University, 06560, Ankara, Turkey
| |
Collapse
|
3
|
Ullah Z, Kraimi A, Kim HJ, Jang S, Mary YS, Kwon HW. Selective detection of F− ion and SO2 molecule: An experimental and DFT study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Tigreros A, Portilla J. Ecological and economic effort analysis in molecular sensor development used for optical detection of cyanide ions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexis Tigreros
- Universidad de Los Andes Chemistry , Carrera 1 No. 18A-10 111711 Bogotá DC COLOMBIA
| | - Jaime Portilla
- Universidad de los Andes Bogotá D. C. Cra. 1 No. 18 A 12, Edificio Q, Of. 830Call 95 No. 71 - 11, Apto 204-1 111711 Bogotá COLOMBIA
| |
Collapse
|
5
|
Karak A, Manna SK, Mahapatra AK. Triphenylamine-based small-molecule fluorescent probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:972-1005. [PMID: 35233590 DOI: 10.1039/d2ay00134a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonia with the three hydrogens substituted by phenyls is known as triphenylamine (TPA), and is one of the most useful compounds because of its vast practical applications. Chemists have produced thousands of TPA derivatives to date. Because of its biocompatibility and structural features, it has been widely used in the fields of molecular recognition, molecular imaging, materials chemistry, and also in biology and medical science. Its strong electron-donating ability encourages scientists to produce different types of probes for molecular recognition. This review is based on recent developments and advances in TPA-based small molecular fluorescent probes within the time period 2010-2021. This extensive review may expedite improvements in more advanced fluorescent probes for vast and stimulating applications in the future.
Collapse
Affiliation(s)
- Anirban Karak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur-721657, Haldia, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
6
|
Suhasini R, Karpagam R, Thirumoorthy K, Thiagarajan V. "Turn-on" unsymmetrical azine based fluorophore for the selective detection of diethylchlorophosphate via photoinduced electron transfer to intramolecular charge transfer pathway. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120206. [PMID: 34325173 DOI: 10.1016/j.saa.2021.120206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The detection of chemical warfare agents (CWAs) in a highly selective, sensitive and speedy manner is essential for public safety in the case of terrorist attacks and achieving this is a challenging task. This study involves in developing a new unsymmetrical azine based fluorophore 4-((E)-(((E)-2-methoxybenzylidene)hydrazono)methyl)benzonitrile[A1] which shows high selectivity and sensitivity to the nerve agent mimic molecule, diethylchlorophosphate (DCP) through fluorescence switch on mechanism. In a fascinating manner, DCP sensing by A1 operates via solvent dependent optical output mechanisms. In the absence of DCP, the fluorescence of A1 was in the off state through photoinduced electron transfer process. In the presence of DCP, a nucleophilic substitution reaction occurs at the imine nitrogen is closer to the anisole moiety that results in the formation of a new intramolecular charge transfer state along with fluorescence enhancement. In acetonitrile, A1 shows 1763-fold fluorescence enhancement in the presence of DCP with a detection limit of 9.86 nM. In Acetonitrile/water (2:8) mixture, protonation at the imine nitrogen leads to 1188-fold fluorescence enhancement. The sensing mechanisms are confirmed by both experimental and time dependent density functional theoretical studies.
Collapse
Affiliation(s)
- Ramalingam Suhasini
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Rajappa Karpagam
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Viruthachalam Thiagarajan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India; Faculty Recharge Programme, University Grants Commission, New Delhi, India.
| |
Collapse
|
7
|
Ullah Z, Sonawane PM, Nguyen TS, Garai M, Churchill DG, Yavuz CT. Bisphenol-based cyanide sensing: Selectivity, reversibility, facile synthesis, bilateral "OFF-ON" fluorescence, C 2ν structural and conformational analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119881. [PMID: 33971439 DOI: 10.1016/j.saa.2021.119881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
A structurally characterized novel dual-pocketed tetra-conjugated bisphenol-based chromophore (fluorescence = 652 nm) was synthesized in gram scale in ~90% yield from its tetraaldehyde. Highly selective, naked-eye detection of CN- (DMSO/H2O) was confirmed by interferent testing. A detection limit of 0.38 µM, within the permissible limit of CN- concentration in drinking water was achieved as mandated by WHO. The "reversibility" study shows potential applicability and reusability of Sen. Moreover, cost-effective and on-site interfaces, application tools such as fabricated cotton swabs, plastic Petri dishes, and filter papers further demonstrated the specific selectivity of Sen for the toxic CN-. In addition, an easily available and handy smartphone-assisted "Color Picker" app was utilized to help estimate the concentration of CN- ion present. A dual phenol deprotonation mechanism is active and supported by 1H NMR spectroscopic data and DFT calculation results.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Energy, Environment, Water and Sustainability (EEWS), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Prasad M Sonawane
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Thien S Nguyen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), 4700 Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Mousumi Garai
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Cafer T Yavuz
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Energy, Environment, Water and Sustainability (EEWS), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Membranes and Porous Materials (AMPM) Center, Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), 4700 Thuwal, 23955-6900 Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
1,10-Phenanthroline-based hexacatenar LCs with complex self-assembly, photophysical and binding selectivity behaviors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Sheshashena Reddy T, Moon H, Choi MS. Turn-on fluorescent naphthalimide-benzothiazole probe for cyanide detection and its two-mode aggregation-induced emission behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119535. [PMID: 33582439 DOI: 10.1016/j.saa.2021.119535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Naphthalimide-benzothiazole conjugate (NBTZ) linked by cinnamonitrile was designed, synthesized, and fully characterized by NMR (1H, 13C, DEPT, HSQC) and high-resolution mass spectrometry. NBTZ exhibited unique turn-on fluorescence in the presence of CN- with relatively high selectivity compared to other anions such as SCN-, HSO4-, ClO4-, NO3-, Cl-, Br-, I-, and PO4-3 in tetrahydrofuran (THF). The detection limit for CN- was found to be 3.35 × 10-8 M in THF. The sensing mechanism was analyzed through 1H, 13C, DEPT, and mass spectroscopy. NBTZ also showed two-mode aggregation-induced emission (AIE) in THF-H2O mixtures. In a 30:70 THF-H2O (v/v) mixture, the maximum AIE was observed at 430 nm (blue) because of the rotation of the CC bond between the naphthalimide ring and the phenyl ring was restricted. In 10:90 THF-H2O (v/v), a new red-shifted AIE appeared at 490 nm (cyan), due to the extended π-conjugation induced by restriction of rotation of the CC bond between the benzothiazole and naphthalimide rings.
Collapse
Affiliation(s)
- T Sheshashena Reddy
- Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea
| | - Hyungkyu Moon
- Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea
| | - Myung-Seok Choi
- Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea.
| |
Collapse
|
10
|
Chen S, Chen Q, Luo S, Cao X, Yang G, Zeng X, Wang Z. Progress in Design, Synthesis and Application of Triphenylamine-Based Fluorescent Probes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Liu H, Wang S, Gao H, Shen Z. Reversible Reaction‐Based Fluorescent Probes for Dynamic Sensing and Bioimaging. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Liu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| |
Collapse
|
12
|
Sathiyaraj M, Thiagarajan V. D-π-A azine based AIEgen with solvent dependent response towards a nerve agent. RSC Adv 2020; 10:25848-25855. [PMID: 35518586 PMCID: PMC9055330 DOI: 10.1039/d0ra04941g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
We developed a D-π-A based unsymmetrical azine molecule 4-((E)-((E)-(4-(dipropylamino)benzylidene)hydrazono)methyl)benzonitrile [DPBN] and studied its optical and aggregation induced emission properties. The DPBN molecule shows good aggregation induced emission (AIE) behaviour with 1157-fold fluorescence enhancement in the aggregated state. In addition to that, both colorimetric as well as fluorometric sensing studies revealed that DPBN selectively detects diethylchlorophosphate (DCP), a potent nerve agent. Interestingly, DPBN shows solvent dependent optical output in the presence of DCPvia two different mechanisms. In the monomer state, it shows red shifted fluorescence enhancement along with color change from colorless to orange color via the formation of a new intramolecular charge transfer state in pure tetrahydrofuran (THF). In the aggregated state, DPBN shows blue shifted emission with fluorescence enhancement in THF-water mixture by protonation at the amine nitrogen centre. Thus, DPBN can be used as a diagnostic measure to selectively detect nerve agents like DCP. This study also paves the way for further development of molecular probes for nerve agents that would represent immense implications in various fields of chemistry and biology.
Collapse
Affiliation(s)
- Munusamy Sathiyaraj
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University Tiruchirappalli-620 024 India +91-4366-2407053
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University Tiruchirappalli-620 024 India +91-4366-2407053
- Faculty Recharge Programme, University Grants Commission New Delhi India
| |
Collapse
|
13
|
Sathiyaraj M, Pavithra K, Thiagarajan V. Azine based AIEgens with multi-stimuli response towards picric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01324b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective detection of picric acid using AIEgens via fluorescence enhancement and quenching in the monomer and aggregated from respectively.
Collapse
|