1
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Comparative Vision of Nonlinear Thermo-Optical Features and Third-Order Susceptibility of Mechanically Flexible Metallosupramolecular Self-Repairing Networks with Isomeric Organic Acids. Inorg Chem 2024; 63:12003-12016. [PMID: 38904106 DOI: 10.1021/acs.inorgchem.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Two self-healing-type supramolecular Ni(II)-metallogels are achieved. The choice of proper low-molecular-weight organic gelators such as trans-butenedioic acid (i.e., trans-BDA) and cis-butenedioic acid (i.e., cis-BDA) and triethylamine in N,N'-dimethylformamide solvent facilitates the metallogelation process. Through rheological investigations the mechanical robustness and viscoelastic properties of synthesized metallogels are explored. An in-depth exploration of thixotropic behavior also supports their self-healing features. Notably, distinct variations in morphologies of metallogels are also ascertained through field emission scanning electron microscopy studies. Furthermore, the existence of versatile noncovalent supramolecular interactions operating throughout the metallogel network is clearly revealed via Fourier transform infrared spectroscopy. Electrospray ionization-mass studies also explore the construction protocol of individual Ni(II)-metallogels. The Z-scan measurements with a 532 nm continuous wave laser were employed to unveil the nonlinear thermo-optical response of two synthesized self-healing metallogels, i.e., trans-BDA-TEA@Ni(II) and cis-BDA-TEA@Ni(II). Crucial parameters like the nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels are obtained. Metallogels show negative signs for the nonlinear refractive index and the nonlinear absorption coefficient. The real parts of the third-order susceptibility for these metallogels are much greater than the imaginary parts (i.e., χR(3) > χI(3)), making such metallogels very promising for all optical-switching applications.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Bolpur, 731236 Birbhum, West Bengal, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Bajkul Milani Mahavidyalaya, Purba Mednipur, West Bengal 721655, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
2
|
Adorinni S, Gentile S, Bellotto O, Kralj S, Parisi E, Cringoli MC, Deganutti C, Malloci G, Piccirilli F, Pengo P, Vaccari L, Geremia S, Vargiu AV, De Zorzi R, Marchesan S. Peptide Stereochemistry Effects from p Ka-Shift to Gold Nanoparticle Templating in a Supramolecular Hydrogel. ACS NANO 2024; 18:3011-3022. [PMID: 38235673 DOI: 10.1021/acsnano.3c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Serena Gentile
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Evelina Parisi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Maria C Cringoli
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Paolo Pengo
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Silvano Geremia
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
3
|
Huang R, Yang S, Hu Z, Peng B, Zhu Y, Cheng T, Liu G. Bridging the incompatibility gap in dual asymmetric catalysis over a thermoresponsive hydrogel-supported catalyst. Commun Chem 2024; 7:2. [PMID: 38172516 PMCID: PMC10764871 DOI: 10.1038/s42004-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The integration of dual asymmetric catalysis is highly beneficial for the synthesis of organic molecules with multiple stereocenters. However, two major issues that need to be addressed are the intrinsic deactivation of dual-species and the extrinsic conflict of reaction conditions. To overcome these concerns, we have utilized the compartmental and thermoresponsive properties of poly(N-isopropylacrylamide) (PNIPAM) to develop a cross-linked PNIPAM-hydrogel-supported bifunctional catalyst. This catalyst is designed with Rh(diene) species situated on the outer surface and Ru(diamine) species positioned within the interior of the hydrogel. The compartmental function of PNIPAM in the middle overcomes intrinsic mutual deactivations between the dual-species. The thermoresponsive nature of PNIPAM allows for precise control of catalytic pathways in resolving external conflicts by controlling the reaction switching between an Rh-catalyzed enantioselective 1,4-addition at 50°C and a Ru-catalyzed asymmetric transfer hydrogenation (ATH) at 25°C. As we envisioned, this sequential 1,4-addition/reduction dual enantioselective cascade reaction achieves a transformation from incompatibility to compatibility, resulting in direct access to γ-substituted cyclic alcohols with dual stereocenters in high yields and enantio/diastereoselectivities. Mechanistic investigation reveals a reversible temperature transition between 50°C and 25°C, ensuring a cascade process comprising a 1,4-addition followed by the ATH process.
Collapse
Affiliation(s)
- Renfu Huang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Shoujin Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Zhipeng Hu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Bangtai Peng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Yuanli Zhu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China.
| |
Collapse
|
4
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Pal I, Majumdar S, Lepcha G, Ahmed KT, Yatirajula SK, Bhattacharya S, Chakravarti R, Bhattacharya B, Biswas SR, Dey B. Exploration of Variable Solvent Directed Self-Healable Supramolecular M(II)-Metallogels (M = Co, Ni, Zn) of Azelaic Acid: Investigating Temperature-Dependent Ion Conductivity and Antibacterial Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:5442-5457. [PMID: 37997919 DOI: 10.1021/acsabm.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Molecular self-assembly assisted self-healing supramolecular metallogels of azelaic acid with cobalt(II)-, nickel(II)-, and zinc(II)-based metal acetate salts were successfully fabricated. Individually, N,N'-dimethylformamide and dimethyl sulfoxide were immobilized within these distinctly synthesized soft-scaffolds of metallogels to attain their semisolid viscoelastic nature. Rheological experiments such as amplitude sweep, frequency sweep, and thixotropic measurements were executed for these metallogels to ratify their gel features. The different extents of supramolecular interactions operating within these solvent-directed metallogels were clearly reflected in terms of their distinct morphological patterns as investigated through field emission scanning electron microscopy. Comparative infrared (IR) spectral properties of metallogels along with individual metal salts and azelaic acid were analyzed. These experimental data clearly depict the significant shifting of Fourier transform (FT)-IR peaks of xerogel samples of different metallogels from the gel-forming precursors. The networks present within the soft-scaffold are evidently illustrated by the electrospray ionization-mass experimental data. The temperature-dependent ionic conductivity studies with these solvent-directed versatile metallogel systems were investigated through impedance spectroscopy. The temperature-dependent impedance spectroscopic studies clearly demonstrate that the ion-transportation within the gel matrix depends not only on the types of cations but also on the dielectric properties of the immobilized solvents. The antipathogenic effect of these metallogel systems has also been explored by testing their effectiveness against human pathogenic Gram-negative bacteria Klebsiella pneumoniae (MTCC 109) and Vibrio parahemolyticus, and Gram-positive bacteria like Bacillus cereus (MTCC 1272). These gel soft-scaffolds show no significant cytotoxicity against both the human neuroblastoma cell line-SH-SY5Y and the human embryonic kidney cell line-HEK 293.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Kazi Tawsif Ahmed
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | | | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Bireswar Bhattacharya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
6
|
Alletto P, Garcia AM, Marchesan S. Short Peptides for Hydrolase Supramolecular Mimicry and Their Potential Applications. Gels 2023; 9:678. [PMID: 37754360 PMCID: PMC10529927 DOI: 10.3390/gels9090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrolases are enzymes that have found numerous applications in various industrial sectors spanning from pharmaceuticals to foodstuff and beverages, consumers' products such as detergents and personal care, textiles, and even for biodiesel production and environmental bioremediation. Self-assembling and gelling short peptides have been designed for their mimicry so that their supramolecular organization leads to the creation of hydrophobic pockets for catalysis to occur. Catalytic gels of this kind can also find numerous industrial applications to address important global challenges of our time. This concise review focuses on the last 5 years of progress in this fast-paced, popular field of research with an eye towards the future.
Collapse
Affiliation(s)
- Paola Alletto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ana Maria Garcia
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Bietsch J, Chen A, Wang D, Wang G. Synthesis of a Series of Trimeric Branched Glycoconjugates and Their Applications for Supramolecular Gels and Catalysis. Molecules 2023; 28:6056. [PMID: 37630308 PMCID: PMC10459207 DOI: 10.3390/molecules28166056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They typically formed gels in toluene and alcohols; some formed gels in ethanol-water mixtures or DMSO water mixtures. The glycoclusters 9 and 10 demonstrated rate acceleration for the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. These were further studied for their metallogels formation properties, and the copper metallogels from compound 9 were successfully utilized to catalyze click reactions. These metallogels were able to form a gel column, which was effective in converting the reactants into the triazole products in multiple cycles. Moreover, the same gel column was used to transform a second click reaction using different reactants. The synthesis and characterization of these compounds and their applications for catalytic reactions were discussed.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.B.); (A.C.); (D.W.)
| |
Collapse
|
8
|
Imam H, Hill K, Reid A, Mix S, Marr PC, Marr AC. Supramolecular Ionic Liquid Gels for Enzyme Entrapment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:6829-6837. [PMID: 37180026 PMCID: PMC10170508 DOI: 10.1021/acssuschemeng.3c00517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine. Gel-entrapped lipase from Aneurinibacillus thermoaerophilus was recycled for 10 runs over 3 days without loss of activity and retained activity for at least 150 days. The procedure does not form covalent bonds upon gel formation, which is supramolecular, and no bonds are formed between the enzyme and the solid support.
Collapse
Affiliation(s)
- Hasan
T. Imam
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Kyle Hill
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Andrew Reid
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Stefan Mix
- Department
of Biocatalysis, Almac Bioscience, Almac
Group, Almac House, 20 Seagoe Industrial Estate, Craigavon, Belfast, Northern Ireland, United Kingdom BT63 5QD
| | - Patricia C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| |
Collapse
|
9
|
Slavík P, Trowse BR, O'Brien P, Smith DK. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat Chem 2023; 15:319-325. [PMID: 36797326 PMCID: PMC9986108 DOI: 10.1038/s41557-023-01136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Organolithium reagents are a vital tool in modern organic chemistry, enabling the synthesis of carbon-carbon bonds. However, due to their high reactivity, low temperatures, inert atmospheres and strictly dried solvents are usually necessary for their use. Here we report an encapsulating method for the stabilization of sensitive organolithium reagents-PhLi, n-BuLi and s-BuLi-in a low-cost hexatriacontane (C36H74) organogel. The use of this technology is showcased in nucleophilic addition reactions under ambient conditions, low-temperature bromine-lithium exchange, ortho-lithiation and C-H functionalization. The gel substantially enhances organolithium stability, allows simple storage, handling and delivery, and enables reproducible reagent portioning. The use of gels as easily divided delivery vehicles for hazardous organometallics has the potential to transform this area of synthetic chemistry, making these powerful reactions safer and more accessible to non-specialist researchers, and enabling the more widespread use of these common synthetic methods.
Collapse
Affiliation(s)
- Petr Slavík
- Department of Chemistry, University of York, York, UK
| | | | - Peter O'Brien
- Department of Chemistry, University of York, York, UK.
| | - David K Smith
- Department of Chemistry, University of York, York, UK.
| |
Collapse
|
10
|
Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS NANO 2023; 17:3259-3288. [PMID: 36800310 DOI: 10.1021/acsnano.3c00543] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.
Collapse
Affiliation(s)
- Tracy Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Emma Belliveau
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Seitz
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Albino M, Burden TJ, Piras CC, Whitwood AC, Fairlamb IJS, Smith DK. Mechanically Robust Hybrid Gel Beads Loaded with "Naked" Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki-Miyaura Reaction. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1678-1689. [PMID: 36778525 PMCID: PMC9906743 DOI: 10.1021/acssuschemeng.2c05484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Indexed: 05/27/2023]
Abstract
The increase in demand for Pd and its low abundance pose a significant threat to its future availability, rendering research into more sustainable Pd-based technologies essential. Herein, we report Pd scavenging mechanically robust hybrid gel beads composed of agarose, a polymer gelator (PG), and an active low-molecular-weight gelator (LMWG) based on 1,3:2,4-dibenzylidenesorbitol (DBS), DBS-CONHNH 2 . The robustness of the PG and the ability of the LMWG to reduce Pd(II) in situ to generate naked Pd(0) nanoparticles (PdNPs) combine within these gel beads to give them potential as practical catalysts for Suzuki-Miyaura cross-coupling reactions. The optimized gel beads demonstrate good reusability, green metrics, and most importantly the ability to sustain stirring, improving reaction times and energy consumption compared to previous examples. In contrast to previous reports, the leaching of palladium from these next-generation beads is almost completely eliminated. Additionally, for the first time, a detailed investigation of these Pd-loaded gel beads explains precisely how the nanoparticles are formed in situ without a stabilizing ligand. Further, detailed catalytic investigations demonstrate that catalysis occurs within the gel beads. Hence, these beads can essentially be considered as robust "nonligated" heterogeneous PdNP catalysts. Given the challenges in developing ligand-free, naked Pd nanoparticles as stable catalysts, these gel beads may have future potential for the development of easily used systems to perform chemical reactions in "kit" form.
Collapse
|
12
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
14
|
Raza R, Baildya N, Ghosh K. Nanoarchitectonics with Positionally Isomeric Coumarin Carbamates: Structure‐Gelation Study, F‐ Recognition, Dye Removal and Excellent Oil‐Spill Recovery. Chempluschem 2022; 87:e202200270. [DOI: 10.1002/cplu.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rameez Raza
- University of Kalyani Chemistry Kalyani 741235 Kalyani INDIA
| | | | - Kumaresh Ghosh
- University of Kalyani Chemistry Kalyani 741235 Kalyani INDIA
| |
Collapse
|
15
|
Esen C, Kumru B. Photocatalyst-Incorporated Cross-Linked Porous Polymer Networks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cansu Esen
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Baris Kumru
- Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
| |
Collapse
|
16
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
17
|
Lorenzetto T, Frigatti D, Fabris F, Scarso A. Nanoconfinement Effects of Micellar Media in Asymmetric Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Davide Frigatti
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| |
Collapse
|
18
|
Mangalath S, Karunakaran SC, Newnam G, Schuster GB, Hud NV. Supramolecular assembly-enabled homochiral polymerization of short (dA) n oligonucleotides. Chem Commun (Camb) 2021; 57:13602-13605. [PMID: 34852364 DOI: 10.1039/d1cc05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A goal of supramolecular chemistry is to create covalent polymers of precise composition and stereochemistry from complex mixtures by the reversible assembly of specific monomers prior to covalent bond formation. We illustrate the power of this approach with short oligomers of deoxyadenosine monophosphate ((dA)n3'p), n ≥ 3, which form supramolecular assemblies with cyanuric acid. The addition of a condensing agent to these assemblies results in their selective, non-enzymatic polymerization to form long polymers (e.g., (dA)1003'p). Significantly, mixtures of D- and L-(dA)53'p form homochiral covalent polymers, which demonstrates self-sorting of racemic monomers and covalent bond formation exclusively in homochiral assemblies.
Collapse
Affiliation(s)
- Sreejith Mangalath
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Gary Newnam
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Gary B Schuster
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| |
Collapse
|