1
|
Dupommier D, Vuagnat M, Rzayev J, Roy S, Jubault P, Besset T. Site-Selective Ortho/Ipso C-H Difunctionalizations of Arenes using Thianthrene as a Leaving Group. Angew Chem Int Ed Engl 2024; 63:e202403950. [PMID: 38712851 DOI: 10.1002/anie.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Site-selective ortho/ipso C-H difunctionalizations of aromatic compounds were designed to afford polyfunctionalized arenes including challenging 1,2,3,4-tetrasubstituted ones (62 examples, up to 97 % yields). To ensure the excellent regioselectivity of the process while keeping high efficiency, an original strategy based on a "C-H thianthenation/Catellani-type reaction" sequence was developed starting from simple arenes. Non-prefunctionalized arenes were first regioselectively converted into the corresponding thianthrenium salts. Then, a palladium-catalyzed, norbornene (NBE)-mediated process allowed the synthesis of ipso-olefinated/ortho-alkylated polyfunctionalized arenes using a thianthrene as a leaving group (revisited Catellani reaction). Pleasingly, using a commercially available norbornene (NBE) and a unique catalytic system, synthetic challenges known for the Catellani reaction with aryl iodides were smoothly and successfully tackled with the "thianthrenium" approach. The protocol was robust (gram-scale reaction) and was widely applied to the two-fold functionalization of various arenes including bio-active compounds. Moreover, a panel of olefins and alkyl halides as coupling partners was suitable. Pleasingly, the "thianthrenium" strategy was successfully further applied to the incorporation of other groups at the ipso (CN/alkyl/H, aryl) and ortho (alkyl, aryl, amine, thiol) positions, showcasing the generality of the process.
Collapse
Affiliation(s)
- Dorian Dupommier
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Javid Rzayev
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Sourav Roy
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| |
Collapse
|
2
|
Deng KZ, Sukowski V, Fernández-Ibáñez MÁ. Non-Directed C-H Arylation of Anisole Derivatives via Pd/S,O-Ligand Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400689. [PMID: 38401127 DOI: 10.1002/anie.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Non-directed C-H arylation is one of the most efficient methods to synthesize biaryl compounds without the need of the prefuctionalization of starting materials, or the installment and removal of directing groups on the substrate. A direct C-H arylation of simple arenes as limiting reactants remains a challenge. Here we disclose a non-directed C-H arylation of anisole derivatives as limiting reagents with aryl iodides under mild reaction conditions. The arylated products are obtained in synthetically useful yields and the arylation of bioactive molecules is also demonstrated. Key to the success of this methodology is the use of a one-step synthesized S,O-ligand.
Collapse
Affiliation(s)
- Ke-Zuan Deng
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Verena Sukowski
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - M Ángeles Fernández-Ibáñez
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Sukowski V, van Borselen M, Mathew S, de Bruin B, Fernández-Ibáñez MÁ. meta-C-H Arylation of Aniline Derivatives via Palladium/ S,O-Ligand/Norbornene Cooperative Catalysis. Angew Chem Int Ed Engl 2023:e202317741. [PMID: 38079090 DOI: 10.1002/anie.202317741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aromatic amines are ubiquitous moieties in organic molecules and their direct functionalization is of great interest in many research areas due to their prevalence in pharmaceuticals and organic electronics. While several synthetic tools exist for the ortho- and para-functionalization of anilines, the functionalization of the less reactive meta-position is not easy to achieve with current methods. To date, the meta-C-H arylation of aniline derivatives has been restricted to either the use of directing groups & templates, or their transformation into anilides & quaternary anilinium salts. Herein, we report the first general and efficient meta-C-H-arylation of non-directed aniline derivatives via cooperative catalysis with a palladium-S,O-ligand-norbornene system. The reaction proceeds under mild conditions with a wide range of aniline derivatives and aryl iodides, while being operationally simple and scalable. Our preliminary mechanistic investigation-including the isolation of several palladium complexes and deuterium experiments-reveal useful insights into the substituent-effects of both the aniline-substrate and the norbornene-mediator during the meta-C-H activation step.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Kaltenberger S, van Gemmeren M. Controlling Reactivity and Selectivity in the Nondirected C-H Activation of Arenes with Palladium. Acc Chem Res 2023; 56:2459-2472. [PMID: 37639549 DOI: 10.1021/acs.accounts.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ConspectusAromatic structures are widespread motifs throughout organic chemistry, and C-H activation has been recognized as a major tool for enabling their sustainable and efficient functionalization. Through C-H activation, arenes can be modified without the need for prefunctionalization, leading to inherent atom- and step-economic advantages over traditional methods. However, for the development of synthetically useful methods, several hurdles have to be overcome. The strength of C-H bonds necessitates the development of sufficiently reactive catalysts, while the presence of multiple C-H bonds within a substrate poses challenges in terms of site-selectivity. Traditionally these challenges have been addressed by substrate control. By attaching different directing groups (DGs), the reactivity of the respective arene was significantly enhanced and the DG guided the metal in close proximity to specific C-H bonds, resulting in high site-selectivity. However, the introduction and removal of the DG add additional steps to the synthetic sequence, and the scope of the reaction is limited to a specific substrate class. The development of complementary nondirected methods that can be applied to a broad range of arenes without the necessity to carry a specific functional group that coordinates to Pd (referred to as simple arenes) is therefore highly desirable. However, the intrinsically lower reactivity of such substrates and the absence of a selectivity-determining DG pose significant challenges that can be solved only by the development of highly efficient catalysts. Consequently, the field of nondirected C-H activation, especially with respect to Pd-catalyzed methods, remained comparatively underdeveloped when we initiated our research program in 2017. At that time, state-of-the-art methods required the arene to be used in large excess, precluding its use in late-stage functionalization. Since organopalladium species are among the most versatile synthetic intermediates, we realized that developing a system, which can effectively and selectively activate C-H bonds in simple arenes with the arene as the limiting reagent, would be a powerful tool in synthetic organic chemistry. This account summarizes our groups' research toward the development and application of catalytic systems offering this desired reactivity and focuses explicitly on Pd-catalyzed nondirected C-H functionalization reactions of arenes, where the arene is employed as a limiting reagent. After an introduction that summarizes the state of Pd-catalyzed C-H activation of arenes before 2017 and the associated challenges, experimental and mechanistic details about the development of the first arene-limited, nondirected C-H functionalization of simple arenes with palladium will be discussed. This reactivity was enabled by the identification and combination of two complementary ligands, an N-heterocycle and an amino acid-derived ligand. Afterward we will discuss the expansion of this dual-ligand approach to further arene-limited transformations. Finally, we describe two methodologies that originated from the observations we made during our studies, namely, the late-stage deuteration of simple arenes and a highly selective olefination method that uses noncovalent interactions to induce meta selectivity.
Collapse
Affiliation(s)
- Simon Kaltenberger
- Otto Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Manuel van Gemmeren
- Otto Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Lin Z, Dhawa U, Hou X, Surke M, Yuan B, Li SW, Liou YC, Johansson MJ, Xu LC, Chao CH, Hong X, Ackermann L. Electrocatalyzed direct arene alkenylations without directing groups for selective late-stage drug diversification. Nat Commun 2023; 14:4224. [PMID: 37454167 DOI: 10.1038/s41467-023-39747-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Electrooxidation has emerged as an increasingly viable platform in molecular syntheses that can avoid stoichiometric chemical redox agents. Despite major progress in electrochemical C-H activations, these arene functionalizations generally require directing groups to enable the C-H activation. The installation and removal of these directing groups call for additional synthesis steps, which jeopardizes the inherent efficacy of the electrochemical C-H activation approach, leading to undesired waste with reduced step and atom economy. In sharp contrast, herein we present palladium-electrochemical C-H olefinations of simple arenes devoid of exogenous directing groups. The robust electrocatalysis protocol proved amenable to a wide range of both electron-rich and electron-deficient arenes under exceedingly mild reaction conditions, avoiding chemical oxidants. This study points to an interesting approach of two electrochemical transformations for the success of outstanding levels of position-selectivities in direct olefinations of electron-rich anisoles. A physical organic parameter-based machine learning model was developed to predict position-selectivity in electrochemical C-H olefinations. Furthermore, late-stage functionalizations set the stage for the direct C-H olefinations of structurally complex pharmaceutically relevant compounds, thereby avoiding protection and directing group manipulations.
Collapse
Affiliation(s)
- Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Uttam Dhawa
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Xiaoyan Hou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Max Surke
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Binbin Yuan
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Yan-Cheng Liou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Chen-Hang Chao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
6
|
Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. Nondirected Pd-Catalyzed C–H Perdeuteration and meta-Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Seo Jin Yun
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jisu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Minkyu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Naksomboon K, Gómez-Bengoa E, Mehara J, Roithová J, Otten E, Fernández-Ibáñez MÁ. Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C-H olefination of aromatic compounds. Chem Sci 2023; 14:2943-2953. [PMID: 36937590 PMCID: PMC10016329 DOI: 10.1039/d2sc06840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Kananat Naksomboon
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I, Universidad País Vasco, UPV/EHU Apdo. 1072 20080 San Sebastian Spain
| | - Jaya Mehara
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - M Ángeles Fernández-Ibáñez
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
8
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O-Ligand Promoted meta-C-H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201750. [PMID: 35639463 PMCID: PMC9401001 DOI: 10.1002/anie.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/07/2022]
Abstract
Reversing the conventional site-selectivity of C-H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O-ligand for the meta-C-H arylation of aryl ethers that significantly outperforms previously reported systems. We demonstrate the unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents. Additionally, ortho-substituted aryl ethers are well tolerated, overcoming the "ortho constraint", which is the necessity to have a meta-substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsymmetrical terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd-complexes-before and after meta C-H activation-prior to evaluation of their respective catalytic activities.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
9
|
Tomanik M, Qian S, Yu JQ. Pd(II)-Catalyzed Synthesis of Bicyclo[3.2.1] Lactones via Tandem Intramolecular β-C(sp 3)-H Olefination and Lactonization of Free Carboxylic Acids. J Am Chem Soc 2022; 144:11955-11960. [PMID: 35763801 DOI: 10.1021/jacs.2c04195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bicyclo[3.2.1] lactones are chemical scaffolds found in numerous bioactive natural products. Herein, we detail the development of a novel palladium(II)-catalyzed tandem intramolecular β-C(sp3)-H olefination and lactonization reaction that rapidly transforms linear carboxylic acid possessing a tethered olefin into the bicyclo[3.2.1] lactone motif. This transformation features a broad substrate scope, shows excellent functional group compatibility, and can be extended to the preparation of the related seven-membered bicyclo[4.2.1] lactones. Additionally, we demonstrate the synthetic potential of this annulation by constructing the 6,6,5-tricyclic lactone core structure of the meroterpenoid cochlactone A. We anticipate that this compelling reaction may provide a novel synthetic disconnection that can be broadly applied toward the preparation of a variety of bioactive natural products.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Shaoqun Qian
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O‐Ligand Promoted
meta
‐C−H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
11
|
Geng J, Fang Z, Tu G, Zhao Y. Non-directed highly para-selective C-H functionalization of TIPS-protected phenols promoted by a carboxylic acid ligand. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Deng K, Jia W, Ángeles Fernández‐Ibáñez M. Selective Para-C-H Alkynylation of Aniline Derivatives by Pd/S,O-Ligand Catalysis. Chemistry 2022; 28:e202104107. [PMID: 34902180 PMCID: PMC9306564 DOI: 10.1002/chem.202104107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a nondirected para-selective C-H alkynylation of aniline derivatives by a Pd/S,O-ligand-based catalyst. The reaction proceeds under mild conditions and is compatible with a variety of substituted anilines. The scalability and further derivatizations of the alkynylated products have been also demonstrated.
Collapse
Affiliation(s)
- Ke‐Zuan Deng
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Wen‐Liang Jia
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|