1
|
Huerta MÁ, Tejada MÁ, Nieto FR. Fucoidan as a Promising Drug for Pain Treatment: Systematic Review and Meta-Analysis. Mar Drugs 2024; 22:290. [PMID: 39057399 PMCID: PMC11277653 DOI: 10.3390/md22070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic effects. We performed a systematic review and meta-analysis to quantify the analgesic effects of pretreatment with fucoidan reported in the available preclinical studies. In addition, we summarized the articles which have studied the therapeutic effects of fucoidan in pathological pain at preclinical and clinical levels. The results of this systematic review reveal that pretreatment with fucoidan is a powerful tool which reduces neutrophil infiltration by 70-90% at early time points. This meta-analysis showed that preventative treatment with fucoidan produced a significant pain reduction. In addition, several preclinical studies have observed that fucoidan treatment reduces the pain that is associated with various pathologies. Finally, fucoidan has also been tested in several clinical trials, with some degree of analgesic efficacy, but they were mostly small pilot studies. Considering all the above information, it can be concluded that fucoidan is not only a preclinical tool for studying the role of neutrophils in pain but also a promising therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Á. Tejada
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Francisco R. Nieto
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
2
|
Clemente-Napimoga JT, Mendes V, Trindade-da-Silva CA, Carvalho GD, Paranhos ACGA, Andrade E Silva F, Buarque E Silva WA, Napimoga MH, Abdalla HB. Experimental traumatic occlusion drives immune changes in trigeminal ganglion. Int Immunopharmacol 2023; 122:110674. [PMID: 37481846 DOI: 10.1016/j.intimp.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
We previously demonstrated that experimental traumatic occlusion (ETO) induces a long-lasting nociceptive response. These findings were associated with altered neuronal patterns and suggestive satellite glial cell activation. This study aimed to elucidate the activation of satellite glial cells following ETO in the trigeminal ganglion. Moreover, we explored the involvement of resident and infiltrating cells in trigeminal ganglion in ETO. Finally, we investigated the overexpression of purinergic signaling and the CX3CL1/CX3CR1 axis. RT-qPCR and electrophoresis showed overexpression of GFAP in the trigeminal ganglion (TG), and immunohistochemistry corroborated these findings, demonstrating SGCs activation. ELISA reveals enhanced levels of TNF-α and IL-1β in TG after 28 d of ETO. In trigeminal ganglia, ETO groups improved the release of CX3CL1, and immunohistochemistry showed higher CX3CR1+ -immunoreactive cells in ETO groups. Immunohistochemistry and electrophoresis of the P2X7 receptor were found in ETO groups. The mRNA levels of IBA1 are upregulated in the 0.7-mm ETO group, while immunohistochemistry showed higher IBA1+ -immunoreactive cells in both ETO groups. The expression of CD68 by electrophoresis and immunohistochemistry was observed in the ETO groups. For last, ELISA revealed increased levels of IL-6, IL-12, and CCL2 in the TG of ETO groups. Furthermore, the mRNA expression revealed augmented transcription factors and cytokines associated with lymphocyte activation, such as RORγt, IL-17, Tbet, IFNγ, FOXP3, and IL-10. The findings of this study suggested that ETO activates SGCs in TG, and purinergic signaling and CX3CL1/CX3CR1 axis were upregulated. We uncovered the involvement of a distinct subtype of macrophages, named sensory neuron-associated macrophage activation (sNMAs), and detected an expanded number of infiltrated macrophages onto TG. These findings indicate that ETO induces chronic/persistent immune response.
Collapse
Affiliation(s)
| | - Vagner Mendes
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Gustavo de Carvalho
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Frederico Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Wilkens Aurélio Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Liu JP, Liu SC, Hu SQ, Lu JF, Wu CL, Hu DX, Zhang WJ. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother 2023; 158:114205. [PMID: 36916431 DOI: 10.1016/j.biopha.2022.114205] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Different studies have confirmed that P2X purinergic receptors play a key role in inflammation. Activation of P2X purinergic receptors can release inflammatory cytokines and participate in the progression of inflammatory diseases. In an inflammatory microenvironment, cells can release a large amount of ATP to activate P2X receptors, open non-selective cation channels, activate multiple intracellular signaling, release multiple inflammatory cytokines, amplify inflammatory response. While P2X4 and P2X7 receptors play an important role in the process of inflammation. P2X4 receptor can mediate the activation of microglia involved in neuroinflammation, and P2X7 receptor can mediate different inflammatory cells to mediate the progression of tissue-wide inflammation. At present, the role of P2X receptors in inflammatory response has been widely recognized and affirmed. Therefore, in this paper, we discussed the role of P2X receptors-mediated inflammation. Moreover, we also described the effects of some antagonists (such as A-438079, 5-BDBD, A-804598, A-839977, and A-740003) on inflammation relief by antagonizing the activities of P2X receptors.
Collapse
Affiliation(s)
- Ji-Peng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Shi-Qi Hu
- Queen Mary College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Jia-Feng Lu
- Basic medical school, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Chang-Lei Wu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
4
|
Deng Y, Zhou M, Zhao X, Xue X, Liao L, Wang J, Li Y. Immune response studies based on P2X7 receptors: A Mini-Review. Curr Pharm Des 2022; 28:993-999. [PMID: 35100953 DOI: 10.2174/1381612828666220131091325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Inflammation, as a complex immunopathological process, is the organism's natural defense response to the organism against harmful, foreign, and destructive immune or non-immune factors. It is the main pathological form of various diseases, such as tumors, neurodegenerative diseases, periodontitis, alcoholic steatohepatitis, asthma, and other diseases. The P2X7 receptor (P2X7R) is widely distributed in vivo and up--regulated in various inflammatory pathological states. Studies have shown that milder chronic inflammation is related to a deficiency or inhibition of P2X7R, which is an indispensable part of the pro-inflammatory mechanism in vivo. P2X7R, a unique subtype of seven purinergic P2X receptors, is an ATP-gated nonselective cationic channel. P2X7R will promote the influx of Ca2+ and the outflow of K+ after being stimulated. The influx of Ca2+ is essential for activating the body's innate immune response and inducing the production of inflammatory factors. This paper reviews the regulation of P2X7R on inflammation from the perspectives of innate immunity and adaptive immunity.
Collapse
Affiliation(s)
- Ying Deng
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Mengting Zhou
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xingtao Zhao
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xinyan Xue
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Li Liao
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137,
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Jing Wang
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yunxia Li
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| |
Collapse
|
5
|
Mazuqueli Pereira EDSB, Basting RT, Abdalla HB, Garcez AS, Napimoga MH, Clemente-Napimoga JT. Photobiomodulation inhibits inflammation in the temporomandibular joint of rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112281. [PMID: 34388640 DOI: 10.1016/j.jphotobiol.2021.112281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Photobiomodulation (PBM) has been applied as a non-invasive technique for treating temporomandibular joint symptoms, especially on painful condition's relief, however the anti-inflammatory mechanism underlying the effect of PBM remains uncertain. This study aims to evaluate the mechanisms of action of PBM (808 nm) in a carrageenan-induced inflammation on temporomandibular joint (TMJ) of rats. In this study male Wistar rats were pre-treated with irradiation of a low-power diode laser for 15 s on TMJ (infra-red 808 nm, 100 mW, 50 J/cm2 and 1.5 J) 15 min prior an injection in the temporomandibular joint of carrageenan (100 μg/TMJ). 1 h after the TMJ treatments, the rats were terminally anesthetized for joint cavity wash and periarticular tissues collect. Samples analysis demonstrated that PBM inhibit leukocytes chemotaxis in the TMJ and significantly reduces amounts of TNF-α, IL-1β and CINC-1. In addition, Western blotting analysis demonstrated that PBM significantly decreased the protein levels of P2X3 and P2X7 receptors in the periarticular tissues. On the other hand, PBM was able to increase protein level of IL-10 (anti-inflammatory cytokine). In summary, it is possible to suggest that PBM inhibit inflammatory chemotaxis, modulation the balance of the pro- and anti-inflammatory characteristics of inflammatory cells.
Collapse
Affiliation(s)
| | - Rosanna Tarkany Basting
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research - Campinas, SP, Brazil
| | - Henrique Ballassini Abdalla
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research - Campinas, SP, Brazil
| | - Aguinaldo Silva Garcez
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research - Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research - Campinas, SP, Brazil
| | | |
Collapse
|