1
|
Zewail MB, F Asaad G, Swellam SM, Abd-Allah SM, K Hosny S, Sallah SK, E Eissa J, S Mohamed S, El-Dakroury WA. Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of Lornoxicam in experimental inflammation. Int J Pharm 2022; 624:122006. [PMID: 35820515 DOI: 10.1016/j.ijpharm.2022.122006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Abstract
Lornoxicam (LRX) is a potent nonsteroidal anti-inflammatory drug (NSAID) used extensively to manage pain and inflammatory conditions. However, the drug possesses poor aqueous solubility (i.e., BCS class II) and a short half-life (3-4 h). Mucoadhesive buccal tablets containing LRX -loaded solid lipid nanoparticles (SLNs) were developed to enhance the drug solubility and bioavailability and achieve a controlled release pattern for a better anti-inflammatory effect. Different LRX-loaded SLNs were prepared using the hot homogenization /ultra-sonication technique and evaluated using size analysis and entrapment efficiency (EE%). Optimized LRX -loaded SLNs formulation showed particle size of 216 ± 7.4 nm, zeta potential of -27.3 ± 4.6 mV, and entrapment efficiency of 92.56 ± 2.3 %. Dried LRX-loaded SLNs alongside mucoadhesive polymers blend (PVP K30 /HPMC K15) were compressed to prepare the mucoadhesive buccal tablets. The tablets showed proper physicochemical properties, good mucoadhesive strength, long mucoadhesive time, suitable pH surface, good swelling capacity, and controlled drug release profile. Furthermore, Fourier transform-infrared (FTIR) spectroscopy, Powder X-Ray diffraction (PXRD), and Scanning electron microscopy (SEM) studies were carried out. The in vivo anti-inflammatory effect of pure LRX, market LRX and optimized mucoadhesive buccal tablet of LRX -loaded SLNs (T3) against carrageenan-induced models were evaluated. T3 showed a significant and early anti-inflammatory response after 1 and 2 h (63.62-77.84 % inhibition) as well as an extended effect after 4 h as compared to pure and market LRX. In parallel, T3 showed the best amelioration of PGE2, COX2, and TNF-α serum levels after 4 h of carrageenan injection.
Collapse
Affiliation(s)
- Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Salma M Swellam
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sama M Abd-Allah
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sahar K Hosny
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Salma K Sallah
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Jehan E Eissa
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Salma S Mohamed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
2
|
Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain. Brain Behav Immun 2022; 102:23-39. [PMID: 35143878 DOI: 10.1016/j.bbi.2022.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Burn injury-induced pain (BIP) is an extremely complicated condition usually resistant to analgesic drugs, while its pathogenesis remains unknown. Considerable attention has been attracted to elucidate the glial mechanisms in chronic pain. In this study, we initiatively used a mouse model of second-degree BIP to investigate the underlying non-neuronal mechanisms at the spinal cord level. Our behavioral results showed that hind-paw burn injury caused persistent allodynia and hyperalgesia for 2 weeks in mice. Further studies revealed that both microglia and astrocytes activated in a spatially- and temporally-dependent manner in spinal cord after burn injury. In addition, the phosphorylated p38 mitogen-activated protein kinase (MAPK)-mediated tumor necrosis factor (TNF) release in spinal microglia is essentially attributed to the early stage of BIP, while the c-Jun N-terminal kinase (JNK) MAPK-dependent chemokine CXCL1 expression is mainly involved in the maintenance of pain hypersensitivity. Most strikingly, burn injury-induced pain symptoms and the activation of astrocytes were significantly suppressed by TNF inhibitor Thalidomide. On the contrary, intrathecal injection of TNF caused apparent pain hypersensitivity, accompanied by the activation of astrocytes and the upregulation of CXCL1 via the JNK MAPK signaling pathway, indicating that TNF is the key cytokine in the interaction between microglia and astrocytes at the spinal level. Moreover, treatment with the CXCR2 receptor antagonist SB225002 to block the biological activities of CXCL1 significantly attenuated the mechanical allodynia and thermal hyperalgesia in this BIP model. Taken together, this study indicates that intervention of glial pathways provides a new perspective in the management of BIP.
Collapse
|
3
|
Cellular Signalling and Photobiomodulation in Chronic Wound Repair. Int J Mol Sci 2021; 22:ijms222011223. [PMID: 34681882 PMCID: PMC8537491 DOI: 10.3390/ijms222011223] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiomodulation (PBM) imparts therapeutically significant benefits in the healing of chronic wounds. Chronic wounds develop when the stages of wound healing fail to progress in a timely and orderly frame, and without an established functional and structural outcome. Therapeutic benefits associated with PBM include augmenting tissue regeneration and repair, mitigating inflammation, relieving pain, and reducing oxidative stress. PBM stimulates the mitochondria, resulting in an increase in adenosine triphosphate (ATP) production and the downstream release of growth factors. The binding of growth factors to cell surface receptors induces signalling pathways that transmit signals to the nucleus for the transcription of genes for increased cellular proliferation, viability, and migration in numerous cell types, including stem cells and fibroblasts. Over the past few years, significant advances have been made in understanding how PBM regulates numerous signalling pathways implicated in chronic wound repair. This review highlights the significant role of PBM in the activation of several cell signalling pathways involved in wound healing.
Collapse
|
4
|
Lu R, Cui SS, Wang XX, Chen L, Liu F, Gao J, Wang W. Astrocytic c-Jun N-terminal kinase-histone deacetylase-2 cascade contributes to glutamate transporter-1 decrease and mechanical allodynia following peripheral nerve injury in rats. Brain Res Bull 2021; 175:213-223. [PMID: 34333051 DOI: 10.1016/j.brainresbull.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Decrease of glutamate transporter-1 (GLT-1) in the spinal dorsal horn after nerve injury induces enhanced excitatory transmission and causes persistent pain. Histone deacetylases (HDACs)-catalyzed deacetylation might contribute to the decrease of GLT-1, while the detailed mechanisms have yet to be fully elaborated. Spinal nerve ligation (SNL) induced significant increases of HDAC2 and decreases of GLT-1 in spinal astrocytes. Intrathecal infusion of the HDAC2 inhibitors attenuated the decrease of GLT-1 and enhanced phosphorylation of glutamate receptors. GLT-1 and phosphorylated c-Jun N-terminal kinase (JNK) were highly colocalized in the spinal cord, and a large number of pJNK positive cells were HDAC2 positive. Intrathecally infusion of the JNK inhibitor SP600125 significantly inhibited SNL-induced upregulation of HDAC2. SNL-induced HDAC2 up-regulation could be inhibited by the neutralizing anti-tumor necrosis factor-α (TNF-α) binding protein etanercept or the microglial inhibitor minocycline. In cultured astrocytes, TNF-α induced enhanced phosphorylation of JNK and a significant increase of HDAC2, as well as a remarkable decrease of GLT-1, which could be prevented by SP600125 or the HDAC2 specific inhibitor CAY10683. Our data suggest that astrocytic JNK-HDAC2 cascade contributes to GLT-1 decrease and mechanical allodynia following peripheral nerve injury. Neuroimmune activation after peripheral nerve injury could induce epigenetic modification changes in astrocytes and contribute to chronic pain maintenance.
Collapse
Affiliation(s)
- Rui Lu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Shan-Shan Cui
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei 430060, China
| | - Xiao-Xia Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Lei Chen
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fei Liu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Jing Gao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| | - Wei Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| |
Collapse
|
5
|
Mota CMD, Rodrigues-Santos C, Carolino ROG, Anselmo-Franci JA, Branco LGS. Citral-induced analgesia is associated with increased spinal serotonin, reduced spinal nociceptive signaling, and reduced systemic oxidative stress in arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112486. [PMID: 31846747 DOI: 10.1016/j.jep.2019.112486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citral (3,7-dimethyl-2,6-octadienal) is the main component of Cymbopogon citratus (DC) Stapf, an herb with analgesic properties. Arthritic pain is the main unpleasant component of rheumatoid arthritis. The pharmacological approaches used to treat arthritic pain are often accompanied by adjuvant drugs or non-pharmacological treatments, showing a constant need in identifying new efficient analgesic drugs. AIM OF THE STUDY To test the hypothesis that citral, which is a monoterpenoid compound with therapeutic properties, reduces nociception, spinal pro-nociceptive and pro-inflammatory signaling, and systemic oxidative stress in arthritic rats. MATERIALS AND METHODS Complete Freund's adjuvant (CFA) was administrated in the left knee joint of rats. Oral treatment with citral was performed during eight days and mechanical allodynia was monitored during the period of treatment to evaluate the analgesic effect of citral. We assessed the levels of serotonin (5-hydroxytryptamine, 5-HT) in the lumbar dorsal horn of the spinal cord (DHSC) and the profiles of expression of the glycogen synthase kinase-3β (GSK3β), which is a 5-HT-regulated intracellular protein, and of the stress-activated protein kinase (SAPK)/jun N-terminal kinase (JNK) in the DHSC. Plasma levels of superoxide dismutase (SOD) were assessed as an indicator of oxidative stress. RESULTS Administration of CFA induced mechanical allodynia associated with reduced spinal GSK3β phosphorylation, increased spinal SAPK/JNK phosphorylation, and increased plasma SOD levels. Oral administration of citral reversed mechanical allodynia, increased endogenous spinal 5-HT levels, reduced spinal SAPK/JNK phosphorylation, and reduced plasma SOD levels. CONCLUSION Citral shows anti-nociceptive effects in an animal model of arthritic pain by modulating spinal nociceptive signaling.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Caroline Rodrigues-Santos
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ruither O G Carolino
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Li Q, Liu S, Li L, Ji X, Wang M, Zhou J. Spinal IL-36γ/IL-36R participates in the maintenance of chronic inflammatory pain through astroglial JNK pathway. Glia 2018; 67:438-451. [PMID: 30578562 DOI: 10.1002/glia.23552] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that spinal neuroinflammation contributes to the maintenance of chronic inflammatory pain. IL-36, as a novel member of the interleukin (IL)-1 super-family cytokines, plays an important role in inflammatory responses. The present study aimed to investigate the role of spinal IL-36 and IL-36 receptor (IL-36R) signaling in the pathology of chronic inflammatory pain. IL-36γ and IL-36R, but not IL-36α and IL-36β, were persistently upregulated in the spinal cord of mice with intraplantar injections of complete Freund's adjuvant (CFA). Intrathecal administration of both IL-36R antagonist (IL-36Ra) and IL-36γ siRNA significantly attenuated CFA-induced chronic inflammatory pain behaviors. Furthermore, CFA-induced IL-36γ expression was mainly observed in spinal neurons whereas IL-36R was primarily expressed in spinal astrocytes. Additionally, the intrathecal injection of IL-36γ was sufficient to induce pain hypersensitivity and astrocyte activation in naive mice, and these effects could be inhibited by blocking c-Jun N-terminal kinase (JNK) phosphorylation. In vitro experiments also demonstrated that the IL-36γ could induce astrocytic JNK activation and inflammatory cytokines release, which was mediated by IL-36R. Finally, intrathecal injection of IL-36γ-activated astrocytes in a pJNK-dependent manner induced mechanical allodynia and thermal hyperalgesia in naive mice. Collectively, these findings reveal that the neuronal/astrocytic interaction in the spinal cord by which neuronally produced IL-36γ activates astrocytes via IL-36R-mediated JNK pathway is crucial for the maintenance of chronic inflammatory pain. Thus, IL-36γ/IL-36R-mediated astrocyte signaling may be a suitable therapeutic target for chronic inflammatory pain.
Collapse
Affiliation(s)
- Qian Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Ji
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Min Wang
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Ebersberger A. The analgesic potential of cytokine neutralization with biologicals. Eur J Pharmacol 2018; 835:19-30. [DOI: 10.1016/j.ejphar.2018.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
|
8
|
Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol 2017; 35 Suppl 107:40-46. [PMID: 28967373 PMCID: PMC6636838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The nervous system detects and interprets a variety of chemical, mechanical, and thermal stimuli. In the face of tissue injury, local inflammatory products perpetuate ongoing activity and sensitisation of the peripheral nerve termini. This ongoing activity evokes a state of robust spinal facilitation mediated by a number of local circuits, the net effect yielding an enhanced message of nociception to higher centres. This messaging typically wanes with the resolution of inflammation or wound healing. However, there are situations in which peripheral and central components of the pain transmission pathway extend and enhance the pain state, leading to a persistent hypersensitivity, e.g., an acute to chronic pain transition. Current work points to the contribution of innate and adaptive immunity in creating these enduring conditions. We briefly describe the underlying biological components of both physiological pain processing and pathological pain processing, as well as the acute to chronic pain transition and the role of innate and adaptive immunity in this transition.
Collapse
Affiliation(s)
- Sarah A Woller
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy, and Immunology, University of California San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Scheper V, Hessler R, Hütten M, Wilk M, Jolly C, Lenarz T, Paasche G. Local inner ear application of dexamethasone in cochlear implant models is safe for auditory neurons and increases the neuroprotective effect of chronic electrical stimulation. PLoS One 2017; 12:e0183820. [PMID: 28859106 PMCID: PMC5578571 DOI: 10.1371/journal.pone.0183820] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/11/2017] [Indexed: 01/15/2023] Open
Abstract
Dexamethasone (DEX) can reduce fibrous tissue growth as well as loss of residual hearing which may occur after cochlear implantation. Little is known about the effect of local inner ear DEX treatment on the spiral ganglion neurons (SGN), which are the target of the electrical stimulation with a cochlear implant (CI). Three different clinically relevant strategies of DEX-delivery into the inner ear were used. DEX was either eluted from the electrode carriers' silicone, released from a reservoir by passive diffusion, or actively applied using a pump based system. The effect of the locally applied DEX on SGN density, size and function was evaluated. DEX did not affect the SGN density compared to the relevant control groups. Simultaneously applied with chronic electrical stimulation (ES), DEX increased the neuroprotective effect of ES in the basal region and the hearing threshold tended to decrease. The EABR thresholds did not correlate with the relevant SGN density. When correlating the SGN number with fibrosis, no dependency was observed. DEX concentrations as applied in these animal models are safe for inner ear delivery in terms of their effect on SGN density. Additionally, DEX tends to improve the neuroprotective effect of chronic electrical stimulation by increasing the number of surviving neurons. This is an important finding in regard to clinical applications of DEX for local treatment of the inner ear in view of cochlear implantation and other applications.
Collapse
Affiliation(s)
- Verena Scheper
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
- * E-mail:
| | - Roland Hessler
- MED-EL Innsbruck, Research & Development, Innsbruck, Österreich
| | - Mareike Hütten
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
| | - Maciej Wilk
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
| | - Claude Jolly
- MED-EL Innsbruck, Research & Development, Innsbruck, Österreich
| | - Thomas Lenarz
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| | - Gerrit Paasche
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| |
Collapse
|
10
|
Wang T, Liao Y, Sun Q, Tang H, Wang G, Zhao F, Jin Y. Upregulation of Matrix Metalloproteinase-9 in Primary Cultured Rat Astrocytes Induced by 2-Chloroethanol Via MAPK Signal Pathways. Front Cell Neurosci 2017; 11:218. [PMID: 28769771 PMCID: PMC5516094 DOI: 10.3389/fncel.2017.00218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/06/2017] [Indexed: 01/25/2023] Open
Abstract
2-Chloroethanol (2-CE) is one of the reactive metabolites of 1,2-DCE in vivo, which might contribute to brain edema formation induced by 1,2-dichloroethane (1,2-DCE) poisoning. Thus, the purpose of this study was to explore the roles of mitogen-activated protein kinase (MAPK) signal pathways in upregulation of matrix metalloproteinase-9 (MMP-9) in 2-CE exposed rat astrocytes. Expression of p38 MAPK (p38), extracellular signal regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and MMP-9 at both protein and gene levels in rat astrocytes were determined using western blot and real-time RT-PCR methods. The results showed that both protein and mRNA levels of MMP-9 in 2-CE exposed astrocytes significantly increased. Meanwhile, protein levels of phosphorylated p38 (p-p38), ERK1/2 (p-ERK1/2) and JNK1/2 (p-JNK1/2) in 2-CE exposed astrocytes also significantly increased. In addition, both protein and mRNA levels of MMP-9 significantly decreased in response to reduced protein levels of p-p38, p-ERK1/2 and p-JNK1/2 achieved by supplement with their specific inhibitors, indicating that activation of MAPK signal pathways might play an important role in upregulation of MMP-9 expression at the transcriptional level in 2-CE exposed astrocytes. Furthermore, since pretreatment of n-acetyl-l-cysteine (NAC), a powerful antioxidant amino acid, could attenuate the elevated levels of MMP-9, p-p38, p-ERK2 and p-JNK1/2 in 2-CE exposed astrocytes, activation of MAPK signal pathways in 2-CE exposed astrocytes could be mediated partially by reactive oxygen species (ROS), which was most likely generated in the metabolism of 2-CE.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Yingjun Liao
- Department of Physiology, China Medical UniversityShenyang, China
| | - Qi Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Hongge Tang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| |
Collapse
|
11
|
Pecikoza UB, Tomić MA, Micov AM, Stepanović-Petrović RM. Metformin Synergizes With Conventional and Adjuvant Analgesic Drugs to Reduce Inflammatory Hyperalgesia in Rats. Anesth Analg 2017; 124:1317-1329. [PMID: 27669556 DOI: 10.1213/ane.0000000000001561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Metformin is a widely used and safe antidiabetic drug that has recently been shown to possess analgesic properties in models of inflammatory pain. Because various arthritic inflammatory disorders are highly prevalent in diabetic patients, we aimed to examine the type of interaction between metformin and several conventional and adjuvant analgesic drugs (ibuprofen, aspirin, tramadol, and pregabalin) in a rat model of somatic inflammatory hyperalgesia. METHODS Inflammation of the rat hind paw was induced by an intraplantar injection of carrageenan (0.1 mL, 1%). The antihyperalgesic effects of metformin (intraperitoneally), analgesics (orally or intraperitoneally), and 2-drug metformin-analgesic combinations were assessed with an electronic Von Frey anesthesiometer, by measuring the change in paw withdrawal thresholds induced by carrageenan (n = 6 rats in drug/drug combination-treated groups). First, we determined the doses of individual drugs needed to produce an antihyperalgesic effect of 50% (ED50 values). In combination experiments, drugs were coadministered in fixed-dose fractions (1/16, 1/8, 1/4, and 1/2) of their individual ED50 values and the type of interaction between components was determined by isobolographic analysis. RESULTS Metformin (50-200 mg/kg) significantly and dose-dependently reduced carrageenan-induced hyperalgesia with a maximal antihyperalgesic effect (mean ± SEM) of 62 ± 6% (all P ≤ .024). Ibuprofen (25-150 mg/kg), aspirin (100-400 mg/kg), tramadol (0.5-5 mg/kg), and pregabalin (2.5-20 mg/kg) also produced significant and dose-dependent antihyperalgesic effects (all P ≤ .042) of similar magnitude to metformin (the maximal antihyperalgesic effects were 73 ± 4% for ibuprofen, 62 ± 4.2% for aspirin, 69 ± 5.9% for tramadol, and 56 ± 3.9% for pregabalin). In combination experiments, administration of 2-drug metformin-analgesic combinations led to a significant and dose-dependent reduction of carrageenan-induced hyperalgesia (all P ≤ .027). The isobolographic analysis revealed that metformin interacted synergistically with the examined analgesics (experimental ED50 values of 2-drug combinations were significantly lower than theoretical additive ED50 values; all P < .05) and that there was a similar, approximately 5-fold, reduction of doses of both drugs in all tested combinations. CONCLUSIONS Our results suggest that in patients who are already receiving metformin therapy, lower doses of ibuprofen/aspirin/tramadol/pregabalin might be sufficient for achieving satisfactory pain relief. Metformin-aspirin combination might be particularly useful because it may achieve multiple therapeutic goals (glucoregulation, pain relief, and cardioprotection).
Collapse
Affiliation(s)
- Uroš B Pecikoza
- From the Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | | | | |
Collapse
|
12
|
Zhang BF, Wang PF, Cong YX, Lei JL, Wang H, Huang H, Han S, Zhuang Y. Anti-high mobility group box-1 (HMGB1) antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway. J Orthop Surg Res 2017; 12:110. [PMID: 28701229 PMCID: PMC5508710 DOI: 10.1186/s13018-017-0614-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation plays a crucial role in kidney damage after crush syndrome (CS). Several researchers report that high mobility group box-1 protein (HMGB1) may be the vital trigger in kidney damage, and tumor necrosis factor-α (TNF-α) and c-Jun N-terminal kinase (JNK) are involve in this pathophysiological process, but their biological roles are unclear. This study aimed to explore the relationship between HMGB1, JNK, and TNF-α in kidney damage. Methods The crush injury model was established using weight compression. The reliability of the crush injury model was determined by hematoxylin-eosin (HE) staining. Western blot was used to detect the expression of HMGB1, JNK, and TNF-α, and TUNEL was used to mark apoptotic cells in the renal cortex. Results The results showed that the highest expression of HMGB1 in muscle was 12 h after CS. JNK and TNF-α increased and peaked at 1 day after CS in kidneys. Western blot analysis revealed that anti-HMGB1 antibody could downregulate the expression of JNK and TNF-α. Anti-TNF-α could downregulate activation of JNK, and SP600125 could downregulate expression of TNF-α in the kidneys. In addition, anti-HMGB1 antibody, anti-TNF-α antibody, and SP600125 could reduce cellular apoptosis in the renal cortex. Conclusions It is possible that JNK and TNF-α commonly contribute to kidney damage by assembling a positive feedback cycle after CS, leading to increased apoptosis in the renal cortex. HMGB1 from the muscle may be the trigger.
Collapse
Affiliation(s)
- Bin-Fei Zhang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Peng-Fei Wang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Yu-Xuan Cong
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Lai Lei
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Hu Wang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Hai Huang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuang Han
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Yan Zhuang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
13
|
Sun Q, Liao Y, Wang T, Tang H, Wang G, Zhao F, Jin Y. 2-Chloroethanol Induced Upregulation of Matrix Metalloproteinase-2 in Primary Cultured Rat Astrocytes Via MAPK Signal Pathways. Front Neurosci 2017; 10:593. [PMID: 28101000 PMCID: PMC5209348 DOI: 10.3389/fnins.2016.00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023] Open
Abstract
This study was to explore the mechanisms underlying 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of matrix metalloproteinase-2 (MMP-2) in rat astrocytes induced by 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE in vivo. Protein and mRNA levels of MMP-2, and the phosphorylated protein levels of p38 MAPK (p-p38), extracellular signal regulated protein kinase (p-ERK1/2) and c-Jun N-terminal kinase (p-JNK1/2) in astrocytes were examined by immunostaining, western blot or real-time RT-PCR analysis. Findings from this study disclosed that protein levels of MMP-2 were upregulated by 2-CE in astrocytes. Meanwhile, protein levels of p-p38, p-ERK1/2 and p-JNK1/2 were also increased apparently in the cells treated with 2-CE. Moreover, pretreatment of astrocytes with SB202190 (inhibitor of p38 MAPK), U0126 (inhibitor of ERK1/2) or SP600125 (inhibitor of JNK1/2) could suppress the upregulated expression of p-p38, p-ERK1/2, and p-JNK1/2. In response to suppressed protein levels of p-p38 and p-JNK1/2, the protein levels of MMP-2 also decreased significantly, indicating that activation of MAPK signal pathways were involved in the mechanisms underlying 2-CE-induced upregulation of MMP-2 expression.
Collapse
Affiliation(s)
- Qi Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Yingjun Liao
- Department of Physiology, China Medical University Shenyang, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Hongge Tang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| |
Collapse
|
14
|
Sun J, Nan G. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke. J Mol Neurosci 2016; 59:90-8. [PMID: 26842916 DOI: 10.1007/s12031-016-0717-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/12/2016] [Indexed: 01/08/2023]
Abstract
Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin, China.
| |
Collapse
|
15
|
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 2015; 227:145-170. [PMID: 25846618 DOI: 10.1007/978-3-662-46450-2_8] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
Collapse
Affiliation(s)
- Elizabeth Amy Old
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
16
|
Etanercept alleviates early brain injury following experimental subarachnoid hemorrhage and the possible role of tumor necrosis factor-α and c-Jun N-terminal kinase pathway. Neurochem Res 2014; 40:591-9. [PMID: 25542238 DOI: 10.1007/s11064-014-1506-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
Cerebral inflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effects of c-Jun N-terminal kinase (JNK) inhibitor SP600125, acetylcholine (Ach), etanercept, and anti-TNF-α on cellular apoptosis in the cerebral cortex and the hippocampus, in order to establish the role of JNK and TNF-α in EBI. The SAH model was established using an endovascular puncture protocol. The reliability of the EBI model was determined by phosphorylated-Bad (pBad) immunohistochemistry. Neurological scores were recorded and western blot was used to detect the expression of JNK and TNF-α, and TUNEL assay was used to mark apoptotic cells. The results showed that pBad positive cells were evenly distributed in the cerebral cortex at different time points. The highest expression of pBad was reached 1 day after SAH, and pJNK and TNF-α reached their peak expression at 2 days after SAH. SP600125, Ach, and etanercept significantly decreased the level of pJNK and TNF-α in the cerebral cortex and the hippocampus. In addition, SP600125 and etanercept reduced cellular apoptosis in the cerebral cortex and the hippocampus and significantly improved neurological scores at 2 days after SAH potentially via inhibition of the JNK-TNF-α pathway. Ach reduced cellular apoptosis only in the cerebral cortex. It is possible that JNK induces TNF-α expression, which in turn enhances JNK expression in EBI after SAH, leading to increased apoptosis in the cerebral cortex and the hippocampus. Thus, our results indicate that that etanercept may be a potential therapeutic agent to alleviate EBI.
Collapse
|