1
|
Peng Y, Zhang AH, Wei L, Welsh WJ. Preclinical Evaluation of Sigma 1 Receptor Antagonists as a Novel Treatment for Painful Diabetic Neuropathy. ACS Pharmacol Transl Sci 2024; 7:2358-2368. [PMID: 39144554 PMCID: PMC11320727 DOI: 10.1021/acsptsci.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
The global prevalence of diabetes is steadily rising, with an estimated 537 million adults affected by diabetes in 2021, projected to reach 783 million by 2045. A severe consequence of diabetes is the development of painful diabetic neuropathy (PDN), afflicting approximately one in every three diabetic patients and significantly compromising their quality of life. Current pharmacotherapies for PDN provide inadequate pain relief for many patients, underscoring the need for novel treatments that are both safe and effective. The Sigma 1 Receptor (S1R) is a ligand-operated chaperone protein that resides at the mitochondria-associated membrane of the endoplasmic reticulum. The S1R has been shown to play crucial roles in regulating cellular processes implicated in pain modulation. This study explores the potential of PW507, a novel S1R antagonist, as a therapeutic candidate for PDN. PW507 exhibited promising in vitro and in vivo properties in terms of ADME, toxicity, pharmacokinetics, and safety. In preclinical rat models of Streptozotocin-induced diabetic neuropathy, PW507 demonstrated significant efficacy in alleviating mechanical allodynia and thermal hyperalgesia following both acute and chronic (2-week) administration, without inducing tolerance and visual evidence of toxicity. To the best of our knowledge, this is the first report to evaluate an S1R antagonist in STZ-induced diabetic rats following both acute and 2-week chronic administration, offering compelling preclinical evidence for the potential use of PW507 as a promising therapeutic option for PDN.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical
Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Allen H. Zhang
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Liping Wei
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - William J. Welsh
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Pergolizzi J, Varrassi G. The Emerging Role of Sigma Receptors in Pain Medicine. Cureus 2023; 15:e42626. [PMID: 37641763 PMCID: PMC10460634 DOI: 10.7759/cureus.42626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Sigma receptors are protein chaperones with the unexpected characteristic of being activated by ligand binding. As such, they represent intriguing new targets for potential drug development. As a protein chaperone, these "receptors" escort proteins from the endoplasmic reticulum to their destinations and act to correct misfolded proteins. The two subtypes of sigma receptors, named σ1 and σ2, are markedly distinct from each other. Agonists and antagonists at these receptors show promise as new drug targets, addressing a range of diseases including neurodegenerative disorders, cancer, and cardiac disorders, and may also be analgesic agents and rehabilitation drugs for opioid use disorder. As an analgesic, sigma receptors seem to be more effective in treating neuropathic than nociceptive pain. New bifunctional compounds are being developed with opioids, because agents targeting sigma receptors may have an opioid-sparing effect. The pipeline of agents based on the sigma receptors is long and may treat things from Fragile X syndrome to Parkinson's disease to Huntington's disease to cancer. A novel agent ADV502 acts as a high-affinity σ1 antagonist and partial agonist at the µ-opioid receptor and may be an important agent both for the treatment of neuropathic cancer pain and for rehabilitation of opioid use disorder. Since there has been little recent innovation in pain medicine regarding new compounds and drug targets, drugs that affect the sigma receptor system seem promising and encouraging.
Collapse
|
3
|
Pergolizzi J, Varrassi G, Coleman M, Breve F, Christo DK, Christo PJ, Moussa C. The Sigma Enigma: A Narrative Review of Sigma Receptors. Cureus 2023; 15:e35756. [PMID: 37020478 PMCID: PMC10069457 DOI: 10.7759/cureus.35756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 03/07/2023] Open
Abstract
The sigma-1 and sigma-2 receptors were first discovered in the 1960s and were thought to be a form of opioid receptors initially. Over time, more was gradually learned about these receptors, which are actually protein chaperones, and many of their unique or unusual properties can contribute to a range of important new therapeutic applications. These sigma receptors translocate in the body and regulate calcium homeostasis and mitochondrial bioenergetics and they also have neuroprotective effects. The ligands to which these sigma receptors respond are several and dissimilar, including neurosteroids, neuroleptics, and cocaine. There is controversy as to their endogenous ligands. Sigma receptors are also involved in the complex processes of cholesterol homeostasis and protein folding. While previous work on this topic has been limited, research has been conducted in multiple disease states, such as addiction, aging. Alzheimer's disease, cancer, psychiatric disorders, pain and neuropathic pain, Parkinson's disease, and others. There is currently increasing interest in sigma-1 and sigma-2 receptors as they provide potential therapeutic targets for many disease indications.
Collapse
|
4
|
Vidal-Torres A, Fernández-Pastor B, García M, Ayet E, Cabot A, Burgueño J, Monroy X, Aubel B, Codony X, Romero L, Pascual R, Serafini MT, Encina G, Almansa C, Zamanillo D, Merlos M, Vela JM. Bispecific sigma-1 receptor antagonism and mu-opioid receptor partial agonism: WLB-73502, an analgesic with improved efficacy and safety profile compared to strong opioids. Acta Pharm Sin B 2023; 13:82-99. [PMID: 36815042 PMCID: PMC9939367 DOI: 10.1016/j.apsb.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022] Open
Abstract
Opioids are the most effective painkillers, but their benefit-risk balance often hinder their therapeutic use. WLB-73502 is a dual, bispecific compound that binds sigma-1 (S1R) and mu-opioid (MOR) receptors. WLB-73502 is an antagonist at the S1R. It behaved as a partial MOR agonist at the G-protein pathway and produced no/unsignificant β-arrestin-2 recruitment, thus demonstrating low intrinsic efficacy on MOR at both signalling pathways. Despite its partial MOR agonism, WLB-73502 exerted full antinociceptive efficacy, with potency superior to morphine and similar to oxycodone against nociceptive, inflammatory and osteoarthritis pain, and superior to both morphine and oxycodone against neuropathic pain. WLB-73502 crosses the blood-brain barrier and binds brain S1R and MOR to an extent consistent with its antinociceptive effect. Contrary to morphine and oxycodone, tolerance to its antinociceptive effect did not develop after repeated 4-week administration. Also, contrary to opioid comparators, WLB-73502 did not inhibit gastrointestinal transit or respiratory function in rats at doses inducing full efficacy, and it was devoid of proemetic effect (retching and vomiting) in ferrets at potentially effective doses. WLB-73502 benefits from its bivalent S1R antagonist and partial MOR agonist nature to provide an improved antinociceptive and safety profile respect to strong opioid therapy.
Collapse
|
5
|
Cottilli P, Gaja-Capdevila N, Navarro X. Effects of Sigma-1 Receptor Ligands on Peripheral Nerve Regeneration. Cells 2022; 11:1083. [PMID: 35406646 PMCID: PMC8998141 DOI: 10.3390/cells11071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022] Open
Abstract
Peripheral nerve injuries lead to the loss of motor, sensory and autonomic functions in the territories supplied by the injured nerve. Currently, nerve injuries are managed by surgical repair procedures, and there are no effective drugs in the clinic for improving the capacity of axonal regeneration. Sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperon protein involved in many functions, including neuroprotection and neuroplasticity. A few previous studies using Sig-1R ligands reported results that suggest this receptor as a putative target to enhance regeneration. The aim of this study was to evaluate the possible effects of Sig-1R ligands on axonal regeneration in a sciatic nerve section and repair model in mice. To this end, mice were treated either with the Sig-1R agonist PRE-084 or the antagonist BD1063, and a Sig-1R knock-out (KO) mice group was also studied. The electrophysiological and histological data showed that treatment with Sig-1R ligands, or the lack of this protein, did not markedly modify the process of axonal regeneration and target reinnervation after sciatic nerve injury. Nevertheless, the nociceptive tests provided results indicating a role of Sig-1R in sensory perception after nerve injury, and immunohistochemical labeling indicated a regulatory role in inflammatory cell infiltration in the injured nerve.
Collapse
Affiliation(s)
- Patrick Cottilli
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 01893 Bellaterra, Spain; (P.C.); (N.G.-C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Núria Gaja-Capdevila
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 01893 Bellaterra, Spain; (P.C.); (N.G.-C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 01893 Bellaterra, Spain; (P.C.); (N.G.-C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
6
|
Hossain MJ, Kendig MD, Letton ME, Morris MJ, Arnold R. Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions. Diabetes Metab J 2022; 46:198-221. [PMID: 35385634 PMCID: PMC8987683 DOI: 10.4093/dmj.2021.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the 'Neurodiab' criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Michael D. Kendig
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Meg E. Letton
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Ria Arnold
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise and Rehabilitation, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, Australia
- Corresponding author: Ria Arnold https://orcid.org/0000-0002-7469-6587 Department of Exercise Physiology, School of Health Sciences, UNSW Sydney, Sydney, NSW 2052, Australia E-mail:
| |
Collapse
|
7
|
SGK1.1 isoform is involved in nociceptive modulation, offering a protective effect against noxious cold stimulus in a sexually dimorphic manner. Pharmacol Biochem Behav 2021; 212:173302. [PMID: 34838531 DOI: 10.1016/j.pbb.2021.173302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
The serum and glucocorticoid-regulated kinase 1 (SGK1) is a widely expressed protein in the Central Nervous System (CNS), involved in regulating the activity of a wide variety of ion channels and transporters and physiological functions, such as neuronal excitability. SGK1.1 is a neuronal splice isoform of SGK1, expressed exclusively in the CNS, distributed in brain and cerebellum, that decreases neuronal excitability via up-regulation of M-current, linked to Kv7.2/3 potassium channels. Strategies to maintain increased SGK1.1 activity could be helpful in decreasing neuronal hyperexcitability, as occurs in neuropathic pain. Transgenic mice overexpressing SGK1.1 (B6.Tg.sgk1) offer a particularly relevant opportunity to assess the physiological involvement of this protein in nociception. Behavior and physiological nociception were evaluated in male and female B6.Tg.sgk1 and wild-type mice (B6.WT), characterizing nociceptive thresholds to different nociceptive stimuli (thermal, chemical and mechanical), as well as the electrophysiological properties of cutaneous sensory Aδ-fibres isolated from the saphenous nerve. The acute antinociceptive effect of morphine was also evaluated. Compared with B6.WT animals, male and female B6.Tg.sgk1 mice showed increased spontaneous locomotor activity. Regarding nociception, there were no differences between transgenic and wild-type mice in heat, chemical and mechanical thresholds, but interestingly, male B6.Tg.sgk1 mice were less sensitive to cold stimulus; B6.Tg.sgk1 animals showed lower sensitivity to morphine. Electrophysiological properties of cutaneous primary afferent fibres were maintained. This is the first demonstration that the SGK1.1 isoform is involved in nociceptive modulation, offering a protective effect against noxious cold stimulus in a sexually dimorphic manner. B6.Tg.sgk1 mice offer a particularly relevant opportunity to further analyze the involvement of this protein in nociception, and studies in models of chronic, neuropathic pain are warranted.
Collapse
|
8
|
Paniagua N, Sánchez-Robles EM, Bagues A, Martín-Fontelles MI, Goicoechea C, Girón R. Behavior and electrophysiology studies of the peripheral neuropathy induced by individual and co-administration of paclitaxel and oxaliplatin in rat. Life Sci 2021; 277:119397. [PMID: 33794249 DOI: 10.1016/j.lfs.2021.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Antitumor agents, as taxanes and platinum compounds, induce peripheral neuropathies which can hamper their use for cancer treatment. The study of chemotherapy-induced neuropathies in humans is difficult because of ethical reasons, differences among administration protocols and intrinsic characteristics of patients. The aim of the present study is to compare the neuropathic signs induced by individual or combined administration of paclitaxel and oxaliplatin. MAIN METHODS Oxaliplatin and paclitaxel were administered individually and combined to induce peripheral neuropathy in rats, sensory neuropathic signs were assessed in the hind limbs and orofacial area. The in vitro skin-saphenous nerve preparation was used to record the axonal activity of Aδ sensory neurons. KEY FINDINGS Animals treated with the combination developed mechanical allodynia in the paws and muscular hyperalgesia in the orofacial area, which was similar to that in animals treated with monotherapy, the latter also developed cold allodynia in the paws. Aδ-fibers of the rats treated with the combination were hyperexcited and presented hypersensitivity to pressure stimulation of the innervated skin, also similar to that recorded in the fibers of the animals treated with monotherapy. SIGNIFICANCE Our work objectively demonstrates that the combination of a platinum compound with a taxane does not worsen the development of sensorial neuropathies in rats, which is an interesting data to take into account when the combination of antitumor drugs is necessary. Co-administration of antitumor drugs is more effective in cancer treatment without increasing the risk of the disabling neuropathic side effects.
Collapse
Affiliation(s)
- N Paniagua
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - E M Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - A Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain.
| | - M I Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - C Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - R Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| |
Collapse
|
9
|
Szczepańska K, Kuder KJ, Kieć-Kononowicz K. Dual-targeting Approach on Histamine H 3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Curr Med Chem 2021; 28:2974-2995. [PMID: 32767910 DOI: 10.2174/0929867327666200806103144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
10
|
Ruiz-Cantero MC, González-Cano R, Tejada MÁ, Santos-Caballero M, Perazzoli G, Nieto FR, Cobos EJ. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol Res 2021; 163:105339. [PMID: 33276102 DOI: 10.1016/j.phrs.2020.105339] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Miriam Santos-Caballero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Department of Nursing, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Francisco R Nieto
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
11
|
Sciatic Nerve Ligation Downregulates Mitochondrial Clusterin in the Rat Prefrontal Cortex. Neuroscience 2020; 446:285-293. [PMID: 32798589 DOI: 10.1016/j.neuroscience.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023]
Abstract
The concentration of the multifunctional protein clusterin is reduced in the plasma of subjects with degenerative scoliosis (DS) and carpal tunnel syndrome (CTS) but elevated in the cerebrospinal fluid of neuropathic pain patients successfully treated with spinal cord stimulation. The present work tries to increase the knowledge of pain-associated changes of plasma and brain clusterin by using an animal model of neuropathy. We studied the effects of sciatic nerve ligation on mechanical allodynia (von Frey test), anxiety (elevated plus maze test), plasma clusterin (enzyme-linked immunosorbent assay) and clusterin expression in the nucleus accumbens (NAC) and prefrontal cortex (PFC) of adult male Wistar rats (western blot). The possible modulatory role of high fat (HF) dieting was also studied, bearing in mind that obesity has been also reported to influence nociception, clusterin levels and prefrontal cortex activation. Animals with nerve ligation showed mechanical allodynia, anxiety and a marked downregulation of clusterin in the mitochondrial fraction of the prefrontal cortex. Animals fed on HF also exhibited a slight increase of the sensitivity to mechanical stimuli and anxiety; however, the diet did not potentiate the effects of nerve ligation. The results did not confirm a parallelism between neuropathy, obesity and alterations of plasma levels of clusterin, but strongly suggest that the protein could be involved in the functional reorganization of the prefrontal cortex which has been recently reported in chronic pain conditions.
Collapse
|
12
|
Kourounakis AP, Xanthopoulos D, Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med Res Rev 2019; 40:709-752. [PMID: 31512284 DOI: 10.1002/med.21634] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Morpholine is a heterocycle featured in numerous approved and experimental drugs as well as bioactive molecules. It is often employed in the field of medicinal chemistry for its advantageous physicochemical, biological, and metabolic properties, as well as its facile synthetic routes. The morpholine ring is a versatile and readily accessible synthetic building block, it is easily introduced as an amine reagent or can be built according to a variety of available synthetic methodologies. This versatile scaffold, appropriately substituted, possesses a wide range of biological activities. There are many examples of molecular targets of morpholine bioactive in which the significant contribution of the morpholine moiety has been demonstrated; it is an integral component of the pharmacophore for certain enzyme active-site inhibitors whereas it bestows selective affinity for a wide range of receptors. A large body of in vivo studies has demonstrated morpholine's potential to not only increase potency but also provide compounds with desirable drug-like properties and improved pharamacokinetics. In this review we describe the medicinal chemistry/pharmacological activity of morpholine derivatives on various therapeutically related molecular targets, attempting to highlight the importance of the morpholine ring in drug design and development as well as to justify its classification as a privileged structure.
Collapse
Affiliation(s)
- Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Xanthopoulos
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Bravo-Caparrós I, Perazzoli G, Yeste S, Cikes D, Baeyens JM, Cobos EJ, Nieto FR. Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms. Front Pharmacol 2019; 10:613. [PMID: 31263413 PMCID: PMC6584826 DOI: 10.3389/fphar.2019.00613] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 (σ1) receptor antagonists are promising tools for neuropathic pain treatment, but it is unknown whether σ1 receptor inhibition ameliorates the neuropathic signs induced by nerve transection, in which the pathophysiological mechanisms and response to drug treatment differ from other neuropathic pain models. In addition, σ1 antagonism ameliorates inflammatory pain through modulation of the endogenous opioid system, but it is unknown whether this occurs during neuropathic pain. We investigated the effect of σ1 inhibition on the painful hypersensitivity associated with the spared nerve injury (SNI) model in mice. Wild-type (WT) mice developed prominent cold (acetone test), mechanical (von Frey test), and heat hypersensitivity (Hargreaves test) after SNI. σ1 receptor knockout (ခσ1-KO) mice did not develop cold allodynia and showed significantly less mechanical allodynia, although they developed heat hyperalgesia after SNI. The systemic acute administration of the selective σ1 receptor antagonist S1RA attenuated all three types of SNI-induced hypersensitivity in WT mice. These ameliorative effects of S1RA were reversed by the administration of the σ1 agonist PRE-084, and were absent in σ1-KO mice, indicating the selectivity of S1RA-induced effects. The opioid antagonist naloxone and its peripherally restricted analog naloxone methiodide prevented S1RA-induced effects in mechanical and heat hypersensitivity, but not in cold allodynia, indicating that opioid-dependent and -independent mechanisms are involved in the effects of this σ1 antagonist. The repeated administration of S1RA twice a day during 10 days reduced SNI-induced cold, mechanical, and heat hypersensitivity without inducing analgesic tolerance during treatment. These effects were observed up to 12 h after the last administration, when S1RA was undetectable in plasma or brain, indicating long-lasting pharmacodynamic effects. These data suggest that σ1 antagonism may have therapeutic value for the treatment of neuropathic pain induced by the transection of peripheral nerves.
Collapse
Affiliation(s)
- Inmaculada Bravo-Caparrós
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | - Sandra Yeste
- Drug Discovery and Preclinical Development, Esteve, Barcelona, Spain
| | - Domagoj Cikes
- Institute of Molecular Biotechnology, Vienna, Austria
| | - José Manuel Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| | - Enrique José Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| | - Francisco Rafael Nieto
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| |
Collapse
|
14
|
Castany S, Codony X, Zamanillo D, Merlos M, Verdú E, Boadas-Vaello P. Repeated Sigma-1 Receptor Antagonist MR309 Administration Modulates Central Neuropathic Pain Development After Spinal Cord Injury in Mice. Front Pharmacol 2019; 10:222. [PMID: 30967775 PMCID: PMC6439356 DOI: 10.3389/fphar.2019.00222] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Up to two-thirds of patients affected by spinal cord injury (SCI) develop central neuropathic pain (CNP), which has a high impact on their quality of life. Most of the patients are largely refractory to current treatments, and new pharmacological strategies are needed. Recently, it has been shown that the acute administration of the σ1R antagonist MR309 (previously developed as E-52862) at 28 days after spinal cord contusion results in a dose-dependent suppression of both mechanical allodynia and thermal hyperalgesia in wild-type CD-1 Swiss female mice. The present work was addressed to determine whether MR309 might exert preventive effects on CNP development by repeated administration during the first week after SCI in mice. To this end, the MR309 (16 or 32 mg/kg i.p.) modulation on both thermal hyperalgesia and mechanical allodynia development were evaluated weekly up to 28 days post-injury. In addition, changes in pro-inflammatory cytokine (TNF-α, IL-1β) expression and both the expression and activation (phosphorylation) of the N-methyl-D-aspartate receptor subunit 2B (NR2B-NMDA) and extracellular signal-regulated kinases (ERK1/2) were analyzed. The repeated treatment of SCI-mice with MR309 resulted in significant pain behavior attenuation beyond the end of the administration period, accompanied by reduced expression of central sensitization-related mechanistic correlates, including extracellular mediators (TNF-α and IL-1β), membrane receptors/channels (NR2B-NMDA) and intracellular signaling cascades (ERK/pERK). These findings suggest that repeated MR309 treatment after SCI may be a suitable pharmacologic strategy to modulate SCI-induced CNP development.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona, Girona, Spain
| | - Xavier Codony
- Esteve Pharmaceuticals, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Spain
| | - Daniel Zamanillo
- Esteve Pharmaceuticals, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Spain
| | - Manuel Merlos
- Esteve Pharmaceuticals, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona, Girona, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona, Girona, Spain
| |
Collapse
|
15
|
Paniagua N, Goicoechea C, Abalo R, López-Miranda V, Vela JM, Merlos M, Martín Fontelles MI, Girón R. May a sigma-1 antagonist improve neuropathic signs induced by cisplatin and vincristine in rats? Eur J Pain 2019; 23:603-620. [PMID: 30376213 DOI: 10.1002/ejp.1333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The antineoplastic drugs cisplatin and vincristine induce peripheral neuropathies. The sigma-1 receptor (σ1R) is expressed in areas of pain control, and its blockade with the novel selective antagonist MR-309 has shown efficacy in nociceptive and neuropathic pain models. Our goal was to test whether this compound reduces neuropathic signs provoked by these antitumoural drugs. METHODS Rats were treated with cisplatin or vincristine to induce neuropathies. The effects of acute or repeated administration of MR-309 were tested on mechanical and thermal sensitivity, electrophysiological activity of Aδ-primary afferents in the rat skin-saphenous nerve preparation, and gastrointestinal or cardiovascular functions. RESULTS Rats treated with antitumourals developed tactile allodynia, while those treated with vincristine also developed mechanical hyperalgesia. These in vivo modifications correlated with electrophysiological hyperactivity (increased spontaneous activity and hyperresponsiveness to innocuous and noxious mechanical stimulation). Animals treated with cisplatin showed gastrointestinal impairment and those receiving vincristine showed cardiovascular toxicity. A single dose of MR-309 strongly reduced both nociceptive behaviour and electrophysiological changes. Moreover, its concomitant administration with the antitumourals blocked the development of neuropathic symptoms, thus restoring mechanical sensitivity, improving the impairment of feeding behaviour and gastrointestinal transit in the cisplatin-treated group along with ameliorating the altered vascular reactivity recorded in rats treated with vincristine. CONCLUSION σ1R antagonist, MR-309, reduces sensorial and electrophysiological neuropathic signs in rats treated with cisplatin or vincristine and, in addition, reduces gastrointestinal and cardiovascular side effects. SIGNIFICANCE σ1R antagonism could be an interesting and new option to palliate antitumoural neuropathies.
Collapse
Affiliation(s)
- Nancy Paniagua
- Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Alcorcón, Spain
| | - Carlos Goicoechea
- Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Alcorcón, Spain
| | - Raquel Abalo
- Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Alcorcón, Spain
| | - Visitacion López-Miranda
- Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Alcorcón, Spain
| | - J Miguel Vela
- Drug Discovery & Preclinical Research, Esteve, Barcelona, Spain
| | - Manuel Merlos
- Drug Discovery & Preclinical Research, Esteve, Barcelona, Spain
| | - María Isabel Martín Fontelles
- Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Alcorcón, Spain
| | - Rocio Girón
- Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Alcorcón, Spain
| |
Collapse
|
16
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
17
|
Wang X, Feng C, Qiao Y, Zhao X. Sigma 1 receptor mediated HMGB1 expression in spinal cord is involved in the development of diabetic neuropathic pain. Neurosci Lett 2018; 668:164-168. [PMID: 29421543 DOI: 10.1016/j.neulet.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022]
Abstract
No study has been conducted to examine the interactions of sigma-1 receptor (Sigma-1R) and high mobility group box 1 protein (HMGB1) in the development of diabetic peripheral neuropathy. Thus, we examined the effects of streptozotocin (STZ) treatment on expression of HMGB1 in subcellular levels in the dorsal root ganglion (DRG) in both wild-type and Sigma-1R-/- mice and evaluated the effects of repeated intrathecal administrations of selective Sigma-1R antagonists BD1047, agonist PRE-084, or HMGB1 inhibitor glycyrrhizin on peripheral neuropathy in wild-type mice. We found that STZ-induced tactile allodynia and thermal hyperalgesia was associated with increased total HMGB1 expression in DRG. STZ treatment promoted the distribution of HMGB1 into cytoplasm. Furthermore, STZ induced modest peripheral neuropathy and did not alter HMGB1 levels in DRG or the distribution of either cytoplasmic or nuclear HMGB1 in Sigma-1R-/- mice compared to sham control mice. Additionally, repeated stimulation of Sigma-1R in the spinal cord induced tactile allodynia and thermal hyperalgesia at 1 week. This phenomenon was associated with increased cytoplasmic HMGB1 translocation and HMGB1 expression in DRG. Finally, we found that repeated blockade of either Sigma-1R or HMGB1 in the spinal cord after STZ treatment prevent the development of tactile allodynia and thermal hyperalgesia at 1 week. These effects were associated with decreased cytoplasmic HMGB1 translocation and HMGB1 expression in DRG. Taken together, our results suggest that Sigma-1R-mediated enhancement of HMGB1 expression in the DRG is critical for the development of peripheral neuropathy in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Neuropathies/chemically induced
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/metabolism
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- HMGB1 Protein/antagonists & inhibitors
- HMGB1 Protein/drug effects
- HMGB1 Protein/metabolism
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Mice
- Mice, Knockout
- Neuralgia/chemically induced
- Neuralgia/etiology
- Neuralgia/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/deficiency
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Anesthesiology, The Second Hospital of Shandong University, 247 Bei Yuan Street, Jinan, 250033, China
| | - Chang Feng
- Department of Anesthesiology, The Second Hospital of Shandong University, 247 Bei Yuan Street, Jinan, 250033, China
| | - Yong Qiao
- Department of Anesthesiology, The Second Hospital of Shandong University, 247 Bei Yuan Street, Jinan, 250033, China
| | - Xin Zhao
- Department of Anesthesiology, The Second Hospital of Shandong University, 247 Bei Yuan Street, Jinan, 250033, China.
| |
Collapse
|
18
|
Arena E, Dichiara M, Floresta G, Parenti C, Marrazzo A, Pittalà V, Amata E, Prezzavento O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med Chem 2018; 10:231-256. [PMID: 29185346 DOI: 10.4155/fmc-2017-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sigma-1 (σ1) receptor has been identified as a chaperone protein that interacts with other proteins, such as N-methyl-D-aspartate (NMDA) and opioid receptors, modulating their activity. σ1 receptor antagonists have been developed to obtain useful compounds for the treatment of psychoses, pain, drug abuse and cancer. Some interesting compounds such as E-5842 (5) and MS-377 (24), haloperidol and piperazine derivatives, respectively, were endowed with high affinity for σ1 receptors (Ki σ1 = 4 and 73 nM; Ki σ2 = 220 and 6900, respectively). They were developed for the treatment of psychotic disorders and 5 also underwent Phase II clinical trials suggesting interesting potential therapeutic applications. Here, σ1 receptor antagonists have been grouped based on chemical structure and reviewed according to structure-activity relationship and potential therapeutic role.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
19
|
Herradón E, González C, Uranga JA, Abalo R, Martín MI, López-Miranda V. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments. Front Pharmacol 2017; 8:196. [PMID: 28533750 PMCID: PMC5420557 DOI: 10.3389/fphar.2017.00196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/24/2017] [Indexed: 01/17/2023] Open
Abstract
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.
Collapse
Affiliation(s)
- Esperanza Herradón
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - Cristina González
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - José A Uranga
- Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain.,Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Raquel Abalo
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - Ma I Martín
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - Visitacion López-Miranda
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| |
Collapse
|
20
|
Papanas N, Ziegler D. Emerging drugs for diabetic peripheral neuropathy and neuropathic pain. Expert Opin Emerg Drugs 2016; 21:393-407. [DOI: 10.1080/14728214.2016.1257605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|