1
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|
2
|
Yang D, Li Y, Tan J, Li W, Xu Z, Xu J, Xu W, Hou C, Zhou J, Li G, Yang M, Liu Y, Tang Q, Zhang X, Zeng W, Feng X, Zhu C. Biomimetic Antithrombotic Tissue-Engineered Vascular Grafts for Converting Cholesterol and Free Radicals into Nitric Oxide. Adv Healthc Mater 2023; 12:e2300340. [PMID: 37154485 DOI: 10.1002/adhm.202300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) are essential materials used in bypass or replacement surgery for cardiovascular diseases; however, their application efficacy is limited because of patency rates, especially under hyperlipidemia, which is also clinically observed in patients with cardiovascular diseases. In such cases, improving sdTEVG patency is challenging because cholesterol crystals easily cause thrombosis and impede endothelialization. Herein, the development of a biomimetic antithrombotic sdTEVG incorporating cholesterol oxidase and arginine into biomineralized collagen-gold hydrogels on a sdTEVG surface is described. Biomimetic antithrombotic sdTEVGs represent a multifunctional substrate for the green utilization of hazardous substances and can convert cholesterol into hydrogen peroxide, which can react with arginine to generate nitric oxide (NO). NO is a vasodilator that can simulate the antithrombotic action of endothelial cells under hyperlipidemic conditions. In vivo studies show that sdTEVGs can rapidly produce large amounts of NO via a cholesterol catalytic cascade to inhibit platelet aggregation, thereby improving the blood flow velocity and patency rates 60 days after sdTEVG transplantation. A practical and reliable strategy for transforming "harmful" substances into "beneficial" factors at early transplantation stages is presented, which can also promote vascular transplantation in patients with hyperlipidemia.
Collapse
Affiliation(s)
- Dongcheng Yang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Yanzhao Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Wenya Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Yunnan, 650500, P. R. China
| | - Zilu Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Jianhua Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Wenhui Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Chunli Hou
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Jingting Zhou
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Mingcan Yang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- Zhongzhi Medical Valley Research Institute, Chongqing, 400030, P. R. China
| | - Qiaorui Tang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Xiaohan Zhang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| | - Wen Zeng
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, P. R. China
- Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center of Chongqing University, Chongqing, 401331, P. R. China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, P. R. China
| |
Collapse
|
3
|
Priyadarshini E, Pandey S, Rawat K. Gold-carbon dot (Au@Cd) nanoconjugates based electrochemical sensing of cholesterol and effect of nitrogen ion implantation on sensitivity. Biochem Biophys Res Commun 2023; 655:97-103. [PMID: 36934590 DOI: 10.1016/j.bbrc.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Serum cholesterol dysregulation is associated with prognosis and diagnosis of many diseases and effective biosensor will improvise their management. A novel electrochemical biosensor was fabricated based on gelatin-Au@CD nanoconjugate films for cholesterol detection. Initially, the surface of indium titanium oxide (ITO) coated glass was modified by drop casting of gelatin-Au@CD nanoconjugates to prepare the electrodes. Electrochemical studies for detection of bioanalytes(such as urea (U), ascorbic acid (AA), oxalic acid (OA), gallic acid (GA), cholesterol (Chox), dextrose (D), l-cysteine (Cys) and citric acid (CA)) were performed using cyclic voltammetry. The presence of nanoconjugates provided an appropriate environment for enhanced electrochemical response for cholesterol. These electrodes exhibited a linear response towards the presence of cholesterol in the linear concentration range of 2-20 mM with a correlation coefficient of 0.95, and the superior sensitivity of 1.36 μA/mM/cm2. Additionally, enhanced sensitivity (2.99 μA/mM/cm2) of nitrogen ion irradiated films up to a fluence of 1016 ions/cm2 was noticed because of morphological changes in the electrode surface brought about by irradiation. Approximately 54% enhancement was found when the ion fluence was 1016 ions/cm2. The designed nanoconjugate electrode showed excellent response towards cholesterol sensing and eliminates the requirement of any enzymes making the overall process simpler, cost-effective and allows for room temperature storage.
Collapse
Affiliation(s)
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - Kamla Rawat
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
4
|
Electrochemical devices for cholesterol detection. J Pharm Biomed Anal 2023; 224:115195. [PMID: 36493575 DOI: 10.1016/j.jpba.2022.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Cholesterol can be considered as a biomarker of illnesses such as heart and coronary artery diseases or arteriosclerosis. Therefore, the fast determination of its concentration in blood is interesting as a means of achieving an early diagnosis of these unhealthy conditions. Electrochemical sensors and biosensors have become a potential tool for selective and sensitive detection of this biomolecule, combining the analytical advantages of electrochemical techniques with the selective recognition features of modified electrodes. This review covers the different approaches carried out in the development of electrochemical sensors for cholesterol, differentiating between enzymatic biosensors and non-enzymatic systems, highlighting lab-on-a-chip devices. A description of the different modification procedures of the working electrode has been included and the role of the different functional materials used has been discussed.
Collapse
|
5
|
Jalalvand AR. Chemometrics-assisted electrochemical biosensing of cholesterol as the sole precursor of steroids by a novel electrochemical biosensor. Steroids 2023; 190:109159. [PMID: 36566822 DOI: 10.1016/j.steroids.2022.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This project was performed with the aims of increasing the sensitivity of differential pulse voltammetry (DPV) which itself is a sensitive electroanalytical technique, and also to compare the area under peak (univariate calibration), height of peak (univariate calibration) and whole of vector (multivariate calibration) for calibration purposes. These topics were investigated by fabrication of a novel electrochemical biosensor for determination of cholesterol (CHO). The procedure used in this project was based on the synthesis of molecularly imprinted polymers (MIPs) to the preconcentration of CHO and its biosensing by a rotating glassy carbon electrode (GCE) modified by co-immobilization of cholesterol oxidase (CO), cholesterol esterase (CE) and horseradish peroxidase (HP) onto multiwalled carbon nanotubes-ionic liquid (COCEHP/MWCNTs-IL/GCE). The results showed that the hydrodynamic DPV (HYDPV) was much more sensitive than DPV and using the area under peak for univariate calibration purposes was more suitable than height of peak. Adsorption at the electrode surface is an important trouble which affects the height and position of voltammetric peaks, but the area under peak is not affected by adsorption therefore, it can be more suitable for univariate calibration purposes. The biosensor response was also calibrated by chronoamperometry and the results confirmed that the HYDPV was more sensitive than chronoamperometry. The next attempt was based on recording the biosensor responses based on second-order HYDPV data and modeling of them (whole of vectors) by three-way calibration methods which showed the best performance among the tested methods for determination of CHO. The biosensor response was long-term stable, repeatable and reproducible which was successfully applied to the analysis of serum sample towards determination of CHO whose results were comparable with a reference method.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Nagarajan A, Sethuraman V, Sridhar T, Sasikumar R. Development of Au@NiO Decorated Polypyrrole Composite for Non-Enzymatic Electrochemical Sensing of Cholesterol. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Usefulness of magnetically-controlled MNPs-enzymes microreactors for the fluorimetric determination of total cholesterol in serum. Talanta 2020; 208:120426. [DOI: 10.1016/j.talanta.2019.120426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022]
|
8
|
Ghiorghita CA, Bucatariu F, Dragan ES. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110050. [DOI: 10.1016/j.msec.2019.110050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
9
|
Antony N, Unnikrishnan L, Mohanty S, Nayak SK. The imperative role of polymers in enzymatic cholesterol biosensors- an overview. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1576197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Neethu Antony
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, Odisha, India
| | - Lakshmi Unnikrishnan
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, Odisha, India
| | - Smita Mohanty
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, Odisha, India
| | - Sanjay K. Nayak
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Phetsang S, Jakmunee J, Mungkornasawakul P, Laocharoensuk R, Ounnunkad K. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 2019; 127:125-135. [PMID: 30818262 DOI: 10.1016/j.bioelechem.2019.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
A facile one-step electrochemical synthesis of a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) (Pt/rGO/P3ABA) nanocomposite film on a screen-printed carbon electrode (SPCE) and its application in the development of sensitive amperometric biosensors was successfully demonstrated herein. The electropolymerization of P3ABA together with co-electrodeposition of rGO and Pt was conducted by cyclic voltammetry, as was the GO reduction to rGO. A Pt/rGO/P3ABA-modified SPCE exhibited excellent electrocatalytic oxidation towards hydrogen peroxide (H2O2) and can be employed as an electrochemical platform for the immobilization of glucose oxidase (GOx) and cholesterol oxidase (ChOx) to fabricate glucose and cholesterol biosensors, respectively. Under the optimized conditions at a working potential of +0.50 V, the proposed biosensors revealed excellent linear responses to glucose and cholesterol in the concentration ranges of 0.25-6.00 mM and 0.25-4.00 mM, respectively, with high sensitivities of 22.01 and 15.94 μA mM-1 cm-2 and low detection limits (LODs) of 44.3 and 40.5 μM. Additionally, the Michaelis-Menten constant (Km) of GOx was 3.54 mM, while the Km of ChOx was 3.82 mM. Both biosensors displayed a good anti-interference ability and clearly exhibited acceptable recoveries for the detection of glucose and cholesterol in a human serum sample (98.2-104.1%).
Collapse
Affiliation(s)
- Sopit Phetsang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chang Mai 50200, Thailand; Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Rawiwan Laocharoensuk
- Nanostructures and Functional Assembly Laboratory (NFA), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
11
|
|
12
|
Gupta S, Murthy CN, Prabha CR. Recent advances in carbon nanotube based electrochemical biosensors. Int J Biol Macromol 2017; 108:687-703. [PMID: 29223757 DOI: 10.1016/j.ijbiomac.2017.12.038] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/09/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
There is an increasing need for rapid, low cost, reusable, reliable and sensitive detection systems for diagnosing infectious diseases, metabolic disorders, rapidly advancing cancers and detecting the presence of environmental pollutants. Most traditional methods are invasive, slow, expensive and laborious, requiring highly specialized instruments. Introduction of biosensors with nanomaterials as transducers of signals have helped in removing the disadvantages associated with traditional detectors. The properties of high mechanical strength, better electrical conductivity and ability to serve as efficient signal transducers make carbon nanotubes (CNTs) ideal material for biosensor applications among the gamut of nanomaterials. Further, CNTs with their high surface areas, easily functionalizable surfaces for receptor immobilization are gaining importance in the construction of biosensors. The expanding field of CNTs bridges the physical sciences with biology, as chemical methods are employed to develop novel tools and platforms for understanding biological systems, in disease diagnosis and treatment. This review presents recent advances in surface functionalization of CNTs necessary for immobilization of enzymes and antibodies for biosensor applications and the methodologies used for the detection of a number of chemical and biological species. The review ends with a speculation on future prospects for CNTs in biology and medicine.
Collapse
Affiliation(s)
- S Gupta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| | - C N Murthy
- Applied Chemistry Department, Faculty of Technology and Engineering, PO Box 51, Kalabhavan, The Maharaja Sayajirao University of Baroda, Vadodara-390001, India
| | - C Ratna Prabha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, India.
| |
Collapse
|
13
|
Sharma D, Lee J, Seo J, Shin H. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles. SENSORS 2017; 17:s17092128. [PMID: 28914766 PMCID: PMC5621016 DOI: 10.3390/s17092128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 01/11/2023]
Abstract
We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.
| | - Jongmin Lee
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.
| | - Junyoung Seo
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.
| | - Heungjoo Shin
- Department of Mechanical Engineering , Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.
| |
Collapse
|
14
|
Saxena U, Das A. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches. Biosens Bioelectron 2016; 75:196-205. [DOI: 10.1016/j.bios.2015.08.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
|
15
|
Wu S, Wang Y, Mao H, Wang C, Xia L, Zhang Y, Ge H, Song XM. Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid–graphene nanocomposite. RSC Adv 2016. [DOI: 10.1039/c6ra06073k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a new biosensor based on PSS/polymeric ionic liquids–graphene nanocomposite with excellent conductivity, favourable biocompatibility and good film-forming properties was constructed to detect cholesterol.
Collapse
Affiliation(s)
- Shuyao Wu
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Yuxiang Wang
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Hui Mao
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Chong Wang
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Lixin Xia
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Yu Zhang
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Hao Ge
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Xi-Ming Song
- Liaoning Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|
16
|
Xu Z, Cheng X, Tan J, Gan X. Fabrication of multiwalled carbon nanotube-polyaniline/platinum nanocomposite films toward improved performance for a cholesterol amperometric biosensor. Biotechnol Appl Biochem 2015; 63:757-764. [DOI: 10.1002/bab.1447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022]
Affiliation(s)
- ZeHong Xu
- College of Chemistry and Chemical Engineering; Yibin University; Yibin Sichuan People's Republic of China
| | - XiaoDan Cheng
- College of Chemistry and Chemical Engineering; Yibin University; Yibin Sichuan People's Republic of China
| | - JianHong Tan
- College of Chemistry and Chemical Engineering; Yibin University; Yibin Sichuan People's Republic of China
| | - Xianxue Gan
- College of Chemistry and Chemical Engineering; Yibin University; Yibin Sichuan People's Republic of China
| |
Collapse
|
17
|
Abraham S, Srivastava S, Kumar V, Pandey S, Rastogi PK, Nirala NR, Kashyap S, Srivastava SK, Singh VN, Ganesan V, Saxena PS, Srivastava A. Enhanced electrochemical biosensing efficiency of silica particles supported on partially reduced graphene oxide for sensitive detection of cholesterol. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Adhikari BR, Govindhan M, Chen A. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. SENSORS 2015; 15:22490-508. [PMID: 26404304 PMCID: PMC4610543 DOI: 10.3390/s150922490] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/23/2015] [Accepted: 08/30/2015] [Indexed: 12/25/2022]
Abstract
Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.
Collapse
Affiliation(s)
- Bal-Ram Adhikari
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Maduraiveeran Govindhan
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Aicheng Chen
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
19
|
A Cholesterol Biosensor Based on the NIR Electrogenerated-Chemiluminescence (ECL) of Water-Soluble CdSeTe/ZnS Quantum Dots. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Dey RS, Raj CR. Enzyme-integrated cholesterol biosensing scaffold based on in situ synthesized reduced graphene oxide and dendritic Pd nanostructure. Biosens Bioelectron 2014; 62:357-64. [DOI: 10.1016/j.bios.2014.06.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 01/30/2023]
|
21
|
Barik MA, Sarma MK, Sarkar CR, Dutta JC. Highly Sensitive Potassium-Doped Polypyrrole/Carbon Nanotube-Based Enzyme Field Effect Transistor (ENFET) for Cholesterol Detection. Appl Biochem Biotechnol 2014; 174:1104-14. [DOI: 10.1007/s12010-014-1029-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
22
|
Ji R, Wang L, Wang G, Zhang X. Synthesize Thickness Copper (I) Sulfide nanoplates on Copper Rod and It's Application as Nonenzymatic Cholesterol Sensor. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Wu X, Chai Y, Yuan R, Zhong X, Zhang J. Synthesis of multiwall carbon nanotubes-graphene oxide-thionine-Au nanocomposites for electrochemiluminescence detection of cholesterol. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2516-27. [PMID: 24447123 DOI: 10.1021/am404931f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The surface modified and aligned mesoporous anatase titania nanofiber mats (TiO2-NF) have been fabricated by electrospinning for esterified cholesterol detection by electrochemical technique. The electrospinning and porosity of mesoporous TiO2-NF were controlled by use of polyvinylpyrrolidone (PVP) as a sacrificial carrier polymer in the titanium isopropoxide precursor. The mesoporous TiO2-NF of diameters ranging from 30 to 60 nm were obtained by calcination at 470 °C and partially aligned on a rotating drum collector. The functional groups such as -COOH, -CHO etc. were introduced on TiO2-NF surface via oxygen plasma treatment making the surface hydrophilic. Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) were covalently immobilized on the plasma treated surface of NF (cTiO2-NF) via N-ethyl-N0-(3-dimethylaminopropyl carbodiimide) and N-hydroxysuccinimide (EDC-NHS) chemistry. The high mesoporosity (∼61%) of the fibrous film allowed enhanced loading of the enzyme molecules in the TiO2-NF mat. The ChEt-ChOx/cTiO2-NF-based bioelectrode was used to detect esterified cholesterol using electrochemical technique. The high aspect ratio, surface area of aligned TiO2-NF showed excellent voltammetric and catalytic response resulting in improved detection limit (0.49 mM). The results of response studies of this biosensor show excellent sensitivity (181.6 μA/mg dL(-1)/cm(2)) and rapid detection (20 s). This proposed strategy of biomolecule detection is thus a promising platform for the development of miniaturized device for biosensing applications.
Collapse
Affiliation(s)
- Kunal Mondal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur, 208016, India
| | | | | | | | | |
Collapse
|
25
|
Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 2013; 42:5425-38. [PMID: 23508125 DOI: 10.1039/c3cs35518g] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing variety of sensors have increasingly significant impacts on everyday life. Key issues to take into consideration toward the integration of biosensing platforms include the demand for minimal costs and the potential for real time monitoring, particularly for point-of-care applications where simplicity must also be considered. In light of these developmental factors, electrochemical approaches are the most promising candidate technologies due to their simplicity, high sensitivity and specificity. The primary focus of this review is to highlight the utility of nanomaterials, which are currently being studied for in vivo and in vitro medical applications as robust and tunable diagnostic and therapeutic platforms. Highly sensitive and precise nanomaterials based biosensors have opened up the possibility of creating novel technologies for the early-stage detection and diagnosis of disease related biomarkers. The attractive properties of nanomaterials have paved the way for the fabrication of a wide range of electrochemical sensors that exhibit improved analytical capacities. This review aims to provide insights into nanomaterials based electrochemical sensors and to illustrate their benefits in various key biomedical applications. This emerging discipline, at the interface of chemistry and the life sciences, offers a broad palette of opportunities for researchers with interests that encompass nanomaterials synthesis, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.
Collapse
Affiliation(s)
- Aicheng Chen
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| | | |
Collapse
|
26
|
Wu X, Chai Y, Yuan R, Chen S, Zhang M, Zhang J. Hemin Functionalized Multiwalled Carbon Nanotubes as a Matrix for Sensitive Electrogenerated Chemiluminescence Cholesterol Biosensor. ELECTROANAL 2013. [DOI: 10.1002/elan.201300311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Ali MA, Srivastava S, Solanki PR, Reddy V, Agrawal VV, Kim C, John R, Malhotra BD. Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Sci Rep 2013; 3:2661. [PMID: 24071971 PMCID: PMC3784945 DOI: 10.1038/srep02661] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/27/2013] [Indexed: 11/21/2022] Open
Abstract
This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized with a bienzyme containing cholesterol oxidase (ChOx) and cholesterol esterase (ChEt), was accomplished using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The XPS studies revealed that 9.3% of the carboxyl (COOH) groups present in the nNiO-MWCNT composite are used to form amide bonds with the NH2 groups of the bienzyme. The response studies on this nanobiochip reveal good reproducibility and selectivity, and a high sensitivity of 2.2 mA/mM/cm2. This integrated microfluidics biochip provides a promising low-cost platform for the rapid detection of biomolecules using minute samples.
Collapse
Affiliation(s)
- Md. Azahar Ali
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
- Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Hyderabad, Andhra Pradesh 502205, India
| | - Saurabh Srivastava
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
| | - Pratima R. Solanki
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Venu Reddy
- Center for NanoBioengineering and SpinTronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Ved V. Agrawal
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
| | - CheolGi Kim
- Center for NanoBioengineering and SpinTronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Renu John
- Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Hyderabad, Andhra Pradesh 502205, India
| | - Bansi D. Malhotra
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
- Center for NanoBioengineering and SpinTronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, South Korea
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi1 110042, India
| |
Collapse
|
28
|
Tong Y, Li H, Guan H, Zhao J, Majeed S, Anjum S, Liang F, Xu G. Electrochemical cholesterol sensor based on carbon nanotube@molecularly imprinted polymer modified ceramic carbon electrode. Biosens Bioelectron 2013; 47:553-8. [DOI: 10.1016/j.bios.2013.03.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
|
29
|
Cao S, Zhang L, Chai Y, Yuan R. Electrochemistry of cholesterol biosensor based on a novel Pt–Pd bimetallic nanoparticle decorated graphene catalyst. Talanta 2013; 109:167-72. [DOI: 10.1016/j.talanta.2013.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 11/29/2022]
|
30
|
Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Tiwari I, Gupta M, Sinha P, Aggarwal S. Electro-oxidation of phenyl hydrazine on a modified electrode constructed using nanocomposite of ruthenium terpyridyl complex, multiwalled carbon nanotubes and nafion. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Highly-sensitive cholesterol biosensor based on platinum–gold hybrid functionalized ZnO nanorods. Talanta 2012; 94:263-70. [DOI: 10.1016/j.talanta.2012.03.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
|
33
|
Zhang H, Liu R, Zheng J. Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode. Analyst 2012; 137:5363-7. [DOI: 10.1039/c2an36075f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Hammond PT. Engineering materials layer-by-layer: Challenges and opportunities in multilayer assembly. AIChE J 2011. [DOI: 10.1002/aic.12769] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Eguílaz M, Villalonga R, Agüí L, Yáñez-Sedeño P, Pingarrón J. Gold nanoparticles: Poly(diallyldimethylammonium chloride)–carbon nanotubes composites as platforms for the preparation of electrochemical enzyme biosensors: Application to the determination of cholesterol. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Eguílaz M, Villalonga R, Yáñez-Sedeño P, Pingarrón JM. Designing Electrochemical Interfaces with Functionalized Magnetic Nanoparticles and Wrapped Carbon Nanotubes as Platforms for the Construction of High-Performance Bienzyme Biosensors. Anal Chem 2011; 83:7807-14. [DOI: 10.1021/ac201466m] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcos Eguílaz
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
37
|
High-performance electrochemical biosensor for the detection of total cholesterol. Biosens Bioelectron 2011; 26:4508-13. [DOI: 10.1016/j.bios.2011.05.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022]
|
38
|
Liu X, Li W, Shen Q, Nie Z, Guo M, Han Y, Liu W, Yao S. The Ag+-G interaction inhibits the electrocatalytic oxidation of guanine--a novel mechanism for Ag+ detection. Talanta 2011; 85:1603-8. [PMID: 21807228 DOI: 10.1016/j.talanta.2011.06.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
The heavy metal ions-nucleobases interaction is an important research topic in environmental and biochemical analysis. The presence of the silver ion (Ag(+)) may influence the formation of oxidation intermediate and the electrocatalytic oxidation activity of guanine (G), since Ag(+) can interact with guanine at the binding sites which are involved in the electrocatalytic oxidation reaction of guanine. According to this principle, a new electrochemical sensor for indirectly detecting Ag(+) based on the interaction of Ag(+) with isolated guanine base using differential pulse voltammetry (DPV) was constructed. Among the heavy metal ions examined, only Ag(+) showed the strongest inhibitory effect on the electrocatalytic oxidation of guanine at the multi-walled carbon nanotubes modified glassy carbon electrode (CNTs/GC). And the quantitative study of Ag(+) based on Ag(+)-G sensing system gave a linear range from 100 nM to 2.5 μM with a detection limit of 30 nM. In addition, this modified electrode had very good reproducibility and stability. The developed electrochemical method is an ideal tool for Ag(+) detection with some merits including remarkable simplicity, low-cost, and no requirement for probe preparation.
Collapse
Affiliation(s)
- Xingxing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens Bioelectron 2010; 26:1514-20. [DOI: 10.1016/j.bios.2010.07.101] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 11/19/2022]
|
41
|
Harper A, Anderson MR. Electrochemical glucose sensors--developments using electrostatic assembly and carbon nanotubes for biosensor construction. SENSORS 2010; 10:8248-74. [PMID: 22163652 PMCID: PMC3231221 DOI: 10.3390/s100908248] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/03/2022]
Abstract
In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs) to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.
Collapse
Affiliation(s)
- Alice Harper
- Department of Chemistry, Berry College, 2277 Martha Berry Highway, P.O. Box 5016, Mt. Berry, GA 20149, USA; E-Mail: (A.H.)
| | - Mark R. Anderson
- Department of Chemistry, University of Colorado Denver, 2190 E. Iliff Ave., Denver, CO 80217-3364, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+1-303-352-3530; Fax: +1-303-556-4776
| |
Collapse
|
42
|
The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 2010; 398:1575-89. [DOI: 10.1007/s00216-010-4054-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/26/2022]
|
43
|
Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON. Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 2010; 25:1254-63. [DOI: 10.1016/j.bios.2009.09.043] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/14/2009] [Accepted: 09/30/2009] [Indexed: 01/18/2023]
|
44
|
Salimi A, Hallaj R, Soltanian S. Fabrication of a Sensitive Cholesterol Biosensor Based on Cobalt-oxide Nanostructures Electrodeposited onto Glassy Carbon Electrode. ELECTROANAL 2009. [DOI: 10.1002/elan.200900229] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Manjunatha H, Nagaraju D, Suresh G, Venkatesha T. Detection of Uric Acid in the Presence of Dopamine and High Concentration of Ascorbic Acid Using PDDA Modified Graphite Electrode. ELECTROANAL 2009. [DOI: 10.1002/elan.200904662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Capek I. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Adv Colloid Interface Sci 2009; 150:63-89. [PMID: 19573856 DOI: 10.1016/j.cis.2009.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/17/2009] [Indexed: 11/29/2022]
Abstract
Nanomaterials are structures with dimensions characteristically much below 100 nm. The unique physical properties (e.g., conductivity, reactivity) have placed these nanomaterials in the forefront of emerging technologies. Significant enhancement of optical, mechanical, electrical, structural, and magnetic properties are commonly found through the use of novel nanomaterials. One of the most exciting classes of nanomaterials is represented by the carbon nanotubes. Carbon nanotubes, including single-wall carbon nanotubes, multi-wall carbon nanotubes, and concentric tubes have been shown to possess superior electronic, thermal, and mechanical properties to be attractive for a wide range of potential applications They sometimes bunch to form "ropes" and show great potential for use as highly sensitive electronic (bio)sensors due to the very small diameter, directly comparable to the size of single analyte molecules and that every single carbon atom is in direct contact with the environment, allowing optimal interaction with nearby molecules. Composite materials based on integration of carbon nanotubes and some other materials to possess properties of the individual components with a synergistic effect have gained growing interest. Materials for such purposes include conducting polymers, redox mediators and metal nanoparticles. These tubes provide the necessary building blocks for electronic circuits and afford new opportunities for chip miniaturization, which can dramatically improve the scaling prospects for the semiconductor technologies and the fabrication of devices, including field-effect transistors and sensors. Carbon nanotubes are one of the ideal materials for the preparation of nanoelectronic devices and nanosensors due to the unique electrical properties, outstanding electrocatalytic properties, high chemical stability and larger specific surface area of nanotubes. Carbon nanotubes are attractive material for supercapacitors due to their unique one-dimensional mesoporous structure, high specific surface area, low resistivity and good chemical stability. Nanoscaled composite materials based on carbon nanotubes have been broadly used due to their high chemical inertness, non-swelling effect, high purity and rigidity. The integration of carbon nanotubes with organics, biomaterials and metal nanoparticles has led to the development of new hybrid materials and sensors. Hybrid nanoscale materials are well established in various processes such as organic and inorganic compounds, nucleic acid detachment, protein separation, and immobilization of enzymes. Those nanostructures can be used as the building blocks for electronics and nanodevices because uniform organic and metal coatings with the small and monodisperse domain sizes are crucial to optimize nanoparticle conductivity and to detect changes in conductivity and absorption induced by analyte adsorption on these surfaces. The highly ordered assembly of zero-dimensional and one-dimensional nanoparticles is not only necessary for making functional devices, but also presents an opportunity to develop novel collective properties.
Collapse
Affiliation(s)
- Ignác Capek
- Slovak Academy of Sciences, Polymer Institute, Dubravska cesta 9, Bratislava, Slovakia.
| |
Collapse
|
47
|
Gopalan AI, Lee KP, Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes–gold nanoparticles composite covered with a layer of chitosan–room-temperature ionic liquid network. Biosens Bioelectron 2009; 24:2211-7. [DOI: 10.1016/j.bios.2008.11.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/06/2008] [Accepted: 11/27/2008] [Indexed: 02/07/2023]
|
48
|
Dhand C, Arya SK, Datta M, Malhotra B. Polyaniline–carbon nanotube composite film for cholesterol biosensor. Anal Biochem 2008; 383:194-9. [DOI: 10.1016/j.ab.2008.08.039] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
49
|
Wang F, Wang G, Yang S, Li C. Layer-by-layer assembly of aqueous dispersible, highly conductive poly(aniline-co-o-anisidine)/poly(sodium 4-styrenesulfonate)/MWNTs core-shell nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5825-5831. [PMID: 18444669 DOI: 10.1021/la8000625] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Poly(aniline-co- o-anisidine) (P(An-co- o-As)) ionomers and poly(sodium 4-styrenesulfonate) (PSS) were layer-by-layer (LbL) assembled on carboxylic acid-functionalized multiwalled carbon nanotubes (MWNTs). The multilayered polyelectrolyte greatly enhanced the dispersibility and stability of MWNTs in aqueous solutions. More importantly, the nanocomposites showed 3 orders of magnitude of conductivity increase, 4.2 S/cm, compared to that of neat ionomers, 0.004 S/cm. The deposition procedure was monitored with zeta (zeta) potential changes. Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis), and Raman spectra confirmed charge transfer from the quinoid units of the P(An-co- o-As) to MWNTs, which effectively delocalize the electrons. Further, we explored the pH response of the assembled P(An-co- o-As)/PSS/MWNTs multilayer nanocomposites. The sharp transition of the conductivity in the pH range of 2 to 6 makes the nanocomposites promising candidates for chemical-biological sensing.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China
| | | | | | | |
Collapse
|
50
|
|