1
|
Mohamadighader N, Zivari-Moshfegh F, Nematollahi D. Electrochemical generation of phenothiazin-5-ium. A sustainable strategy for the synthesis of new bis(phenylsulfonyl)-10H-phenothiazine derivatives. Sci Rep 2024; 14:4276. [PMID: 38383682 PMCID: PMC10881970 DOI: 10.1038/s41598-024-53620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
In this work, the electrochemical generation of phenothiazin-5-ium (PTZox) from the direct oxidation of phenothiazine (PTZ) in a water/acetonitrile mixture using a commercial carbon anode and conventional stainless steel cathode is reported. PTZox is a reactive intermediate with high potential synthetic applications, which is used in this paper for the synthesis of new phenothiazine derivatives. In this work a novel and simple electrochemical methodology for the synthesis of some bis(phenylsulfonyl)-10H-phenothiazine derivatives was established. In this paper, a mechanism for PTZ oxidation in the presence of arylsulfinic acids has been proposed based on the results obtained from voltammetric and coulometric experiments as well as spectroscopic data of the products. These syntheses are performed in a simple cell by applying constant current under mild conditions and at room temperature with high atom economy.
Collapse
Affiliation(s)
- Niloofar Mohamadighader
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali-Sina University, Hamedan, 65174-38683, Iran
| | - Faezeh Zivari-Moshfegh
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali-Sina University, Hamedan, 65174-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali-Sina University, Hamedan, 65174-38683, Iran.
| |
Collapse
|
2
|
Mayther MF, O'Mari O, Flacke P, Bhatt D, Andrews S, Vullev VI. How Do Liquid-Junction Potentials and Medium Polarity at Electrode Surfaces Affect Electrochemical Analyses for Charge-Transfer Systems? J Phys Chem B 2023; 127:1443-1458. [PMID: 36735861 DOI: 10.1021/acs.jpcb.2c07983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The importance of electrochemical analysis for charge-transfer science cannot be overstated. Interfaces in electrochemical cells present certain challenges in the interpretation and the utility of the analysis. This publication focuses on: (1) the medium polarity that redox species experience at the electrode surfaces that is smaller than the polarity in the bulk media and (2) the liquid-junction potentials from interfacing electrolyte solutions of different organic solvents, namely, dichloromethane, benzonitrile, and acetonitrile. Electron-donor-acceptor pairs of aromatics with similar structures (i.e., 1-naphthylamine and 1-nitronaphthalene, 10-methylphenothiazine and 9-nitroanthracene, and 1-aminopyrene and 1-nitropyrene) serve as redox analytes for this study. Using the difference between the reduction potentials of the oxidized donors and the acceptors eliminates the effects of the liquid junctions on the analysis of charge-transfer thermodynamics. This analysis also offers a means for evaluating the medium polarity that the redox species experience at the surface of the working electrode and the effects of the liquid junctions on the measured reduction potentials. While the liquid-junction potentials between the dichloromethane and acetonitrile solutions amount to about 90 mV, for the benzonitrile-acetonitrile junctions, the potentials are only about 30 mV. The presented methods for analyzing the measured electrochemical characteristics of donors and acceptors illustrate a means for improved evaluation of the thermodynamics of charge-transfer systems.
Collapse
Affiliation(s)
- Maximillian F Mayther
- Department of Chemistry, University of California, Riverside, California92521, United States
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, California92521, United States
| | - Paul Flacke
- Department of Bioengineering, University of California, Riverside, California92521, United States
| | - Dev Bhatt
- Department of Bioengineering, University of California, Riverside, California92521, United States
| | - Samantha Andrews
- Department of Bioengineering, University of California, Riverside, California92521, United States
| | - Valentine I Vullev
- Department of Chemistry, University of California, Riverside, California92521, United States.,Department of Bioengineering, University of California, Riverside, California92521, United States.,Department of Biochemistry, University of California, Riverside, California92521, United States.,Materials Science and Engineering Program, University of California, Riverside, California92521, United States
| |
Collapse
|
3
|
Grint I, Crea F, Vasiliadou R. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies. ChemistryOpen 2022; 11:e202200100. [PMID: 36166688 PMCID: PMC9716038 DOI: 10.1002/open.202200100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
Drugs are metabolized within the liver (pH 7.4) by phase I and phase II metabolism. During the process, reactive metabolites can be formed that react covalently with biomolecules and induce toxicity. Identifying and detecting reactive metabolites is an important part of drug development. Preclinical and clinical investigations are conducted to assess the toxicity and safety of a new drug candidate. Electrochemistry coupled to mass spectrometry is an ideal complementary technique to the current preclinical studies, a pure instrumental approach without any purification steps and tedious protocols. The combination of microfluidics with electrochemistry towards the mimicry of drug metabolism offers portability, low volume of reagents and faster reaction times. This review explores the development of microfluidic electrochemical cells for mimicking drug metabolism.
Collapse
Affiliation(s)
- Isobel Grint
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Francesco Crea
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Rafaela Vasiliadou
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| |
Collapse
|
4
|
Pulikkutty S, Manjula N, Chen TW, Chen SM, Lou BS, Siddiqui MR, Wabaidur SM, Ali MA. Fabrication of gadolinium zinc oxide anchored with functionalized-SWCNT planted on glassy carbon electrode: Potential detection of psychotropic drug (phenothiazine) in biotic sample. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Fan A, Chen J, Li N, Guo H, Li X, Zhang L, Shao H. Probing Ca2+-induced electron transfer on the surface of self-assembled monolayer using SECM. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wantulok J, Sokolova R, Degano I, Kolivoska V, Nycz JE, Fiedler J. Spectroelectrochemical Properties of 1,10‐Phenanthroline Substituted by Phenothiazine and Carbazole Redox‐active Units. ChemElectroChem 2021. [DOI: 10.1002/celc.202100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jakub Wantulok
- Institute of Chemistry University of Silesia in Katowice ul. Szkolna 9 40-007 Katowice Poland
| | - Romana Sokolova
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Viliam Kolivoska
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Jacek E. Nycz
- Institute of Chemistry University of Silesia in Katowice ul. Szkolna 9 40-007 Katowice Poland
| | - Jan Fiedler
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| |
Collapse
|
7
|
Coria-Oriundo LL, Battaglini F, Wirth SA. Efficient decolorization of recalcitrant dyes at neutral/alkaline pH by a new bacterial laccase-mediator system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112237. [PMID: 33892342 DOI: 10.1016/j.ecoenv.2021.112237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Laccases and laccase-mediator systems (LMS) are versatile catalysts that can oxidize a broad range of substrates coupled to the sole reduction of dioxygen to water. They possess many biotechnological applications in paper, textile, and food industries, bioethanol production, organic synthesis, detection and degradation of pollutants, and biofuel cell development. In particular, bacterial laccases are getting relevance due to their activity in a wide range of pH and temperature and their robustness under harsh conditions. However, the enzyme and the redox mediator's availability and costs limit their large-scale commercial use. Here we demonstrate that β-(10-phenothiazyl)-propionic acid can be used as an efficient and low-cost redox mediator for decolorizing synthetic dyes by the recombinant laccase SilA from Streptomyces ipomoeae produced in E. coli. This new LMS can decolorize more than 80% indigo carmine and malachite green in 1 h at pH = 8.0 and 2 h in tap water (pH = 6.8). Furthermore, it decolorized more than 40% of anthraquinone dye remazol brilliant blue R and 80% of azo dye xylidine ponceau in 5 h at 50 °C, pH 8.0. It supported at least 3 decolorization cycles without losing activity, representing an attractive candidate for a cost-effective and environmentally friendly LMS functional at neutral to alkaline pH.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Lima 25, Perú
| | - Fernando Battaglini
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Sonia A Wirth
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA-CONICET-UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina.
| |
Collapse
|
8
|
Liu X, He JH, Sakthivel R, Chung RJ. Rare earth erbium molybdate nanoflakes decorated functionalized carbon nanofibers: An affordable and potential catalytic platform for the electrooxidation of phenothiazine. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Sakthivel R, Annalakshmi M, Chen SM, Kubendhiran S. Synergistic activity of binary metal sulphide WS 2–RuS 2 nanospheres for the electrochemical detection of the antipsychotic drug promazine. NEW J CHEM 2020. [DOI: 10.1039/d0nj00096e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic presentation for the synthesis of tungsten disulfide–ruthenium disulfide (WS2–RuS2) nanospheres and application for the electrochemical determination of antipsychotic drug promazine.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | | |
Collapse
|
10
|
Campbell C, Cornthwaite H, Watterson J. Oxidation of Selected Phenothiazine Drugs During Sample Preparation: Effects of Varying Extraction Conditions on the Extent of Oxidation. J Anal Toxicol 2018; 42:99-114. [PMID: 29186521 DOI: 10.1093/jat/bkx067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/02/2017] [Indexed: 11/14/2022] Open
Abstract
Characterization of degradation products formed from selected phenothiazine drugs during standard solid-phase extraction (SPE) approaches is described. An analytical method for promethazine (PMZ), chlorpromazine (CPZ) and their respective N-desmethyl and sulfoxide metabolites in biological samples (bone tissue extract and blood) by ultra performance liquid chromatography-photodiode array detection, using mixed-mode SPE for basic drugs was developed. When ethyl acetate:isopropanol:ammonium hydroxide (80:17:3) was used as the elution solvent during method development, extraneous peaks were observed that were absent in the negative controls. Analysis of extracts of PMZ and CPZ individually showed extraneous peaks, including peaks with retention time and UV spectra suggesting the formation of the sulfoxide metabolites, amongst others. Analytes were then extracted individually and analyzed by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The results confirmed the oxidation of PMZ to its sulfoxide and N-oxide metabolites and oxidation of CPZ to its sulfoxide metabolite. Oxidation was also observed in analysis of whole blood, and thus was not specific to bone tissue extract. To determine if extraction with minimal oxidation was possible, extractions using SPE with a different elution solvent system (dichloromethane:isopropanol:ammonium hydroxide) and filtration/pass through extraction (FPTE) with and without evaporation were evaluated. The results demonstrated that the sample preparation method highly influenced the extent of oxidation. FPTE without an evaporation step was the only method that did not measurably induce analyte oxidation.
Collapse
Affiliation(s)
- Courtney Campbell
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, CanadaP3E 2C6
| | - Heather Cornthwaite
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, CanadaP3E 2C6
| | - James Watterson
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, Canada P3E 2C6.,Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, Canada P3E 2C6.,Department of Forensic Science, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, Canada P3E 2C6
| |
Collapse
|
11
|
Vandeput M, Rodríguez-Gómez R, Izere AM, Zafra-Gómez A, De Braekeleer K, Delporte C, Van Antwerpen P, Kauffmann JM. Electrochemical Studies of Ethoxyquin and its Determination in Salmon Samples by Flow Injection Analysis with an Amperometric Dual Detector. ELECTROANAL 2017. [DOI: 10.1002/elan.201700611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marie Vandeput
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe, Campus Plaine CP 205/06, 1050 Brussels Belgium
| | - Rocío Rodríguez-Gómez
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe, Campus Plaine CP 205/06, 1050 Brussels Belgium
| | - Ange-Michaëlla Izere
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe, Campus Plaine CP 205/06, 1050 Brussels Belgium
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry; University of Granada; Campus of Fuentenueva E-18071 Granada Spain
| | - Kris De Braekeleer
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe, Campus Plaine CP 205/06, 1050 Brussels Belgium
| | - Cédric Delporte
- Analytical Platform, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe Campus Plaine CP 205/05, 1050 Brussels Belgium
| | - Pierre Van Antwerpen
- Analytical Platform, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe Campus Plaine CP 205/05, 1050 Brussels Belgium
| | - Jean-Michel Kauffmann
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy; Université libre de Bruxelles; Boulevard du Triomphe, Campus Plaine CP 205/06, 1050 Brussels Belgium
| |
Collapse
|
12
|
Helvenstein M, Hambÿe S, Blankert B. Hepatocyte-based flow analytical bioreactor for online xenobiotics metabolism bioprediction. Nanobiomedicine (Rij) 2017; 4:1849543517702898. [PMID: 29942392 PMCID: PMC6009796 DOI: 10.1177/1849543517702898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 11/23/2022] Open
Abstract
The research for new in vitro screening tools for predictive metabolic profiling of drug candidates is of major interest in the pharmaceutical field. The main motivation is to avoid late rejection in drug development and to deliver safer drugs to the market. Thanks to the superparamagnetic properties of iron oxide nanoparticles, a flow bioreactor has been developed which is able to perform xenobiotic metabolism studies. The selected cell line (HepaRG) maintained its metabolic competencies once iron oxide nanoparticles were internalized. Based on magnetically trapped cells in a homemade immobilization chamber, through which a flow of circulating phase was injected to transport nutrients and/or the studied xenobiotic, off-line and online (when coupled to a high-performance liquid chromatography chain) metabolic assays were developed using diclofenac as a reference compound. The diclofenac demonstrated a similar metabolization profile chromatogram, both with the newly developed setup and with the control situation. Highly versatile, this pioneering and innovative instrumental design paves the way for a new approach in predictive metabolism studies.
Collapse
Affiliation(s)
- M Helvenstein
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - S Hambÿe
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - B Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
13
|
An unusual electrochemical oxidation of phenothiazine dye to phenothiazine-bi-1,4-quinone derivative (a donor-acceptor type molecular hybrid) on MWCNT surface and its cysteine electrocatalytic oxidation function. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Torres S, Brown R, Szucs R, Hawkins JM, Zelesky T, Scrivens G, Pettman A, Taylor MR. The application of electrochemistry to pharmaceutical stability testing — Comparison with in silico prediction and chemical forced degradation approaches. J Pharm Biomed Anal 2015; 115:487-501. [DOI: 10.1016/j.jpba.2015.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
|
15
|
Gul T, Bischoff R, Permentier HP. Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Torres S, Brown R, Szucs R, Hawkins JM, Scrivens G, Pettman A, Kraus D, Taylor MR. Rapid Synthesis of Pharmaceutical Oxidation Products Using Electrochemistry: A Systematic Study of N-Dealkylation Reactions of Fesoterodine Using a Commercially Available Synthesis Cell. Org Process Res Dev 2014. [DOI: 10.1021/op500312e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Susana Torres
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| | - Roland Brown
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| | - Roman Szucs
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| | - Joel M. Hawkins
- Pfizer Worldwide
R+D, Eastern Point Road, Groton, Connecticut, United States
| | - Garry Scrivens
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| | - Alan Pettman
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| | - Debbie Kraus
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| | - Mark R. Taylor
- Pfizer Worldwide
R+D, Ramsgate Road, Sandwich, Kent CT139NJ, United Kingdom
| |
Collapse
|
17
|
Primo EN, Oviedo MB, Sánchez CG, Rubianes MD, Rivas GA. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA. Bioelectrochemistry 2014; 99:8-16. [DOI: 10.1016/j.bioelechem.2014.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/03/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
|
18
|
Pereira PF, Marra MC, Cunha RR, da Silva WP, Munoz RAA, Richter EM. Two simple and fast electrochemical methods for simultaneous determination of promethazine and codeine. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Bize C, Garrigues JC, Corbet JP, Rico-Lattes I, Blanzat M. Bioactive Formulations with Sugar-Derived Surfactants: A New Approach for Photoprotection and Controlled Release of Promethazine. Chemphyschem 2013; 14:1126-31. [DOI: 10.1002/cphc.201200932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 11/12/2022]
|
20
|
Liu P, Lu M, Zheng Q, Zhang Y, Dewald HD, Chen H. Recent advances of electrochemical mass spectrometry. Analyst 2013; 138:5519-39. [DOI: 10.1039/c3an00709j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Odijk M, Olthuis W, van den Berg A, Qiao L, Girault H. Improved Conversion Rates in Drug Screening Applications Using Miniaturized Electrochemical Cells with Frit Channels. Anal Chem 2012; 84:9176-83. [DOI: 10.1021/ac301888g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mathieu Odijk
- BIOS Lab-on-a-Chip Group, MESA+ Institute
for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group, MESA+ Institute
for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - A. van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute
for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Liang Qiao
- Laboratory of Physical and Analytical
Chemistry, EPFL, Lausanne,
Switzerland
| | - Hubert Girault
- Laboratory of Physical and Analytical
Chemistry, EPFL, Lausanne,
Switzerland
| |
Collapse
|
22
|
Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—Current state and future perspectives. J Chromatogr A 2012; 1259:16-49. [DOI: 10.1016/j.chroma.2012.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 02/04/2023]
|
23
|
Telgmann L, Faber H, Jahn S, Melles D, Simon H, Sperling M, Karst U. Identification and quantification of potential metabolites of Gd-based contrast agents by electrochemistry/separations/mass spectrometry. J Chromatogr A 2012; 1240:147-55. [DOI: 10.1016/j.chroma.2012.03.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/01/2023]
|
24
|
Webster GK, Craig RA, Pommerening CA, Acworth IN. Selection of Pharmaceutical Antioxidants by Hydrodynamic Voltammetry. ELECTROANAL 2012. [DOI: 10.1002/elan.201200071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Ensafi AA, Arabzadeh A. A new sensor for electrochemical determination of captopril using chlorpromazine as a mediator at a glassy carbon electrode. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812050024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kauffmann JM, Van Antwerpen P, Sarakbi A, Feier B, Tarik S, Aydogmus Z. Utility of Screen Printed Electrodes for in Vitro Metabolic Stability Assays: Application to Acetaminophen and its Thioconjugates. ELECTROANAL 2011. [DOI: 10.1002/elan.201100355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
de Jesus CG, Sampaio Forte CM, Wohnrath K, Andrade Pessôa C, de Sá Soares JE, Fujiwara ST, de Lima-Neto P, Nunes Correia A. Electroanalytical Performance of (SiPy+Cl−/CuTsPc)5 LbL Film for Detecting Promethazine Hydrochloride. ELECTROANAL 2011. [DOI: 10.1002/elan.201100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal Bioanal Chem 2010; 399:1859-68. [DOI: 10.1007/s00216-010-4575-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022]
|
29
|
Baumann A, Karst U. Online electrochemistry/mass spectrometry in drug metabolism studies: principles and applications. Expert Opin Drug Metab Toxicol 2010; 6:715-31. [DOI: 10.1517/17425251003713527] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 2009. [DOI: 10.1007/s10008-009-0978-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Wei X, Hao Q, Zhou Q, Wu J, Lu L, Wang X, Yang X. Interaction between promethazine hydrochloride and DNA and its application in electrochemical detection of DNA hybridization. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Ribeiro F, Cardoso A, Portela R, Lima J, Machado S, de Lima-Neto P, De Souza D, Correia A. Electroanalytical Determination of Promethazine Hydrochloride in Pharmaceutical Formulations on Highly Boron-Doped Diamond Electrodes Using Square-Wave Adsorptive Voltammetry. ELECTROANAL 2008. [DOI: 10.1002/elan.200804286] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Łapkowski M, Plewa S, Stolarczyk A, Doskocz J, Sołoducho J, Cabaj J, Bartoszek M, Sułkowski WW. Electrochemical synthesis of polymers with alternate phenothiazine and bithiophene units. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Chen Y, Monshouwer M, Fitch WL. Analytical Tools and Approaches for Metabolite Identification in Early Drug Discovery. Pharm Res 2006; 24:248-57. [PMID: 17048114 DOI: 10.1007/s11095-006-9162-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/07/2006] [Indexed: 11/30/2022]
Abstract
Determination of the chemical structures of metabolites is a critical part of the early pharmaceutical discovery process. Understanding the structures of metabolites is useful both for optimizing the metabolic stability of a drug as well as rationalizing the drug safety profile. This review describes the current state of the art in this endeavor. The likely outcome of metabolism is first predicted by comparison to the literature. Then metabolites are synthesized in a variety of in vitro systems. The various approaches to LC/UV/MS are applied to learn information about these metabolites and structure hypotheses are made. Structures are confirmed by synthesis or NMR. The special topic of reactive metabolite structure determination is briefly addressed.
Collapse
Affiliation(s)
- Yuan Chen
- Drug Metabolism and Pharmacokinetics, Roche Palo Alto, 3431 Hillview Ave., Palo Alto, California 94304, USA
| | | | | |
Collapse
|
35
|
Nozaki K, Kitagawa H, Kimura S, Kagayama A, Arakawa R. Investigation of the electrochemical oxidation products of zotepine and their fragmentation using on-line electrochemistry/electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:606-12. [PMID: 16575780 DOI: 10.1002/jms.1017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
When zotepine, an antipsychotic drug, was electrochemically oxidized using electrospray ionization mass spectrometry (ESI-MS) coupled with a microflow electrolytic cell, [M + 16 + H]+ (m/z 348), [M-H]+ (m/z 330) and [M-14 + H]+ (m/z 318) were observed as electrochemical oxidation product ions (M represents the zotepine molecule). Although a major fragment ion that was derived from the dimethyl aminoethyl moiety was observed only at m/z 72 in the collision-induced dissociation (CID) spectrum of zotepine, new fragments such as m/z 315 and 286 ions could be generated in the CID spectrum by combining electrochemical oxidation and CID. Since these fragments were relatively specific with high ion strength, it was thought that they would be useful for developing a sensitive LC-MS/MS assay. The S-oxide and N-demethylated products were detected by electrolysis assuring that a portion of P450 metabolites of zotepine could be mimicked by the electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) system.
Collapse
Affiliation(s)
- Kazuyoshi Nozaki
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharmaceutical Inc., 1-6, Kashima 2-chome, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | |
Collapse
|