1
|
Park J, Chai K, Kim W, Yoon T, Park H, Kim W, You J, Na S, Park J. Highly enhanced Hg 2+ detection using optimized DNA and a double coffee ring effect-based SERS map. Biosens Bioelectron 2024; 264:116646. [PMID: 39142231 DOI: 10.1016/j.bios.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Hg2+ is a highly toxic heavy metal ion that poses serious risks to human health and the environment. Due to its tendency to accumulate, it can easily enter the human body through the food chain, making it crucial to develop detection sensors that mimic real environmental conditions. To achieve this, our study employed a surface-enhanced Raman scattering (SERS) sensor using two strategies. First, we designed a highly selective probe by optimizing the probe and reporter DNA strands to bind Hg2+ within a thymine-thymine mismatch. Second, we used the double coffee ring effect to concentrate the optimized probe DNA. These two strategies greatly enhanced the SERS signal, resulting in a sensor with exceptional sensitivity, a low detection limit of 208.71 fM, and superior selectivity for Hg2+. The practical application of the sensor was demonstrated by successfully detecting Hg2+ in drinking water, tap water, canned tuna, and tuna sashimi. Additionally, the experimental results were presented in a pizza-shaped SERS mapping image, allowing users to estimate Hg2+ concentrations through color, providing a user-friendly and intuitive method for data comprehension and analysis. Our study presents a promising approach for sensitive and reliable Hg2+ detection, with potential implications for environmental monitoring and food safety.
Collapse
Affiliation(s)
- Joohyung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyunghwan Chai
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woong Kim
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - Hyunjun Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woochang Kim
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Kumoh National Institute of Technology, 39177, Gumi, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Chaghazardi M, Kashanian S, Nazari M, Omidfar K, Shariati-Rad M, Joseph Y, Rahimi P. Mercury (II) sensing using a simple turn-on fluorescent graphene oxide based aptasensor in serum and water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124057. [PMID: 38457872 DOI: 10.1016/j.saa.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
A simple, highly sensitive, and selective fluorometric aptasensing platform based on aptamer and graphene oxide (GO) is proposed for the determination of mercury (II) ion (Hg2+). In the designed assay, two aptamer probes, a carboxy-fluorescein (FAM) labeled aptamer (aptamer A) and its complementary (aptamer B) with partial complement containing several mismatches and GO as the quencher were used. In the absence of Hg2+, both A and B aptamers were adsorbed on the surface of GO by π-π-stacking, leading to fluorescence quenching of FAM due to fluorescence resonance energy transfer (FRET). Upon exposure to Hg2+, the A and B aptamer strands bind Hg2+ and form T-Hg2+-T complexes, leading to the formation of a stable double-stranded aptamer. The double-stranded aptamer is detached from the GO surface, resulting in the recovery of FAM fluorescence. The fluorescence intensity (FI) of the developed sensor was correlated with the Hg2+ concentration under optimized experimental conditions in two wide linear ranges, even in the presence of 10 divalent cations as interferences. The linear ranges were obtained from 200.0 to 900.0 fM and 5.0 to 33.0 pM, a limit of detection (LOD) of 106.0 fM, and a limit of quantification (LOQ) of 321.3 fM. The concentration of Hg2+ was determined in five real samples containing three water and two serum samples, using spiking and standard addition methods and the results were compared with the spiked amounts and atomic absorption (AAS) as standard method respectively, with acceptable recoveries. Furthermore, in the standard addition method, to overcome the effects of matrix influence of real samples in quantitative predictions, the excitation-emission matrix (EEM) data for samples was simultaneously analyzed by multivariate curve resolution with alternating least squares (MCR-ALS) as a second-order standard addition method (SOSAM).
Collapse
Affiliation(s)
- Mosayeb Chaghazardi
- Faculty of Chemistry, Razi University, Kermanshah, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran; Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.
| | - Maryam Nazari
- Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Shariati-Rad
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Yvonne Joseph
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
3
|
Govindasamy M, Sriram B, Wang SF, Chang YJ, Rajabathar JR. Highly sensitive determination of cancer toxic mercury ions in biological and human sustenance samples based on green and robust synthesized stannic oxide nanoparticles decorated reduced graphene oxide sheets. Anal Chim Acta 2020; 1137:181-190. [PMID: 33153601 DOI: 10.1016/j.aca.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
This work proposes the conventional sonochemical synthesis of nanoparticles of tin (IV) oxide on reduced graphene oxide (rGOS@SnO2) influencing the formation of a composite with enhanced properties. The combination of SnO2 nanoparticles with rGOS weakens the accumulation in layered structures of the latter system, which leads to better exposure of SnO2 active sites and thus increases the conductivity of rGOS@SnO2 composite. This validates the improved electro-catalytic activity of the composite based on previous reports for its successful utilization in the electrochemical determination of toxic contaminants. The quantitative determination of mercury ions, through the use of the electrochemical sensor based on rGOS@SnO2 manifests several advantages such as simple operator, promptness, cost effectiveness and time independency when compared to other traditional techniques. The fabricated sensor displays two wide linear responses in the range of 0.25-705.3 μM for mercury ions, with a rapid response time about 1 s, and with a high sensitivity of 10.18 μA μM-1 cm-2 under optimized conditions. The accumulation of traces of mercury in the bodies of fish in the marine eco system marks the significance of its detection in real samples. The satisfactory results of the proposed sensor establish the supreme efficacy of layered nanomaterials in conjunction with nanoparticles for the simple, rapid and efficient detection of pollutants in food and biological samples.
Collapse
Affiliation(s)
- Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan; Department of Chemistry, Bishop Heber College, Vayalur Road, Puthur, Tiruchirappalli, Tamil Nadu, 620017, India.
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Yu-Jen Chang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Jothi Ramalingam Rajabathar
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Zhang Y, Chu G, Guo Y, Zhao W, Yang Q, Sun X. An electrochemical biosensor based on Au nanoparticles decorated reduced graphene oxide for sensitively detecting of Hg2+. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Square voltammetric sensing of mercury at very low working potential by using oligomer-functionalized Ag@Au core-shell nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Influences of Probe's Morphology for Metal Ion Detection Based on Light-Addressable Potentiometric Sensors. SENSORS 2016; 16:s16050701. [PMID: 27187412 PMCID: PMC4883392 DOI: 10.3390/s16050701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 01/15/2023]
Abstract
The sensing mechanism of binding Hg2+ into thymine-thymine (T-T) mismatched base pairs was introduced into a light-addressable potentiometric sensor (LAPS) with anti-Hg2+ aptamer as the sensing units. Three kinds of T-rich single-strand DNA (ssDNA) chains with different spacer lengths, from 0 to 12 –CH2 groups, were designed to investigate surface charge and morphological effects on the LAPS’ output. First, by comparing the responding of LAPS modified with three kinds of ssDNA, it was found that the best performance for Hg2+ sensing was exhibited by the probe without –CH2 groups. The detection limit of Hg2+ ion was 1 ppt under the optimal condition. Second, the cooperative effects of surface charge and morphology on the output were observed by the controlled experiments. The two effects were the negative charge balanced by metal cations and the morphological changing caused by the formation of T-Hg2+-T structure. In conclusion, not only the influences of the aptamer probe’s morphology and surface charge was investigated on the platform of LAPS, but also sensing Hg2+ ions was achieved for the first time by the presented aptamer LAPS.
Collapse
|
8
|
Wang M, Zhang S, Ye Z, Peng D, He L, Yan F, Yang Y, Zhang H, Zhang Z. A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb(II) and Hg(II). Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1569-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liu S, Kang M, Yan F, Peng D, Yang Y, He L, Wang M, Fang S, Zhang Z. Electrochemical DNA Biosensor Based on Microspheres of Cuprous Oxide and Nano-chitosan for Hg(II) Detection. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Tian R, Chen X, Jiang N, Hao N, Xu L, Yao C. An electrochemical sensing strategy based on a three dimensional ordered macroporous polyaniline–platinum platform and a mercury(ii) ion-mediated DNAzyme functionalized nanolabel. J Mater Chem B 2015; 3:4805-4813. [DOI: 10.1039/c5tb00796h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Hg2+-switched DNA biosensor using a three dimensional ordered macroporous polyaniline–platinum platform and a G-rich sequence recognition probe was developed, with the detection limit of 8.7 × 10−14 M.
Collapse
Affiliation(s)
- Rong Tian
- College of Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Xiaojun Chen
- College of Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Nan Jiang
- College of Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Ning Hao
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Lin Xu
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Cheng Yao
- College of Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| |
Collapse
|
11
|
Kanchana P, Sudhan N, Anandhakumar S, Mathiyarasu J, Manisankar P, Sekar C. Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration. RSC Adv 2015. [DOI: 10.1039/c5ra11424a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An electrochemical method for the determination of trace levels of mercury(ii) ions using Aloe vera (Av) assisted hydroxyapatite (HA) nanoparticles modified glassy carbon electrode (GCE) by square wave voltammetry is described for the first time.
Collapse
Affiliation(s)
- P. Kanchana
- Department of Bioelectronics and Biosensors
- Alagappa University
- Karaikudi-630 004
- India
| | - N. Sudhan
- Department of Bioelectronics and Biosensors
- Alagappa University
- Karaikudi-630 004
- India
| | - S. Anandhakumar
- Central Electrochemical Research Institute
- Karaikudi-630 006
- India
| | - J. Mathiyarasu
- Central Electrochemical Research Institute
- Karaikudi-630 006
- India
| | - P. Manisankar
- Department of Industrial Chemistry
- Alagappa University
- Karaikudi-630 003
- India
| | - C. Sekar
- Department of Bioelectronics and Biosensors
- Alagappa University
- Karaikudi-630 004
- India
| |
Collapse
|
12
|
Govindhan M, Adhikari BR, Chen A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 2014. [DOI: 10.1039/c4ra10399h] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of nanomaterials-based electrochemical sensors for environmental monitoring and food safety applications are assessed.
Collapse
Affiliation(s)
| | | | - Aicheng Chen
- Department of Chemistry
- Lakehead University
- Thunder Bay, Canada
| |
Collapse
|
13
|
Aneesh PK, Nambiar SR, Rao TP, Ajayaghosh A. Electrochemical synthesis of a gold atomic cluster–chitosan nanocomposite film modified gold electrode for ultra-trace determination of mercury. Phys Chem Chem Phys 2014; 16:8529-35. [DOI: 10.1039/c4cp00063c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Jarczewska M, Ziółkowski R, Górski Ł, Malinowska E. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer. Bioelectrochemistry 2013; 96:1-6. [PMID: 24334186 DOI: 10.1016/j.bioelechem.2013.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).
Collapse
Affiliation(s)
- Marta Jarczewska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Łukasz Górski
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Elżbieta Malinowska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
|
16
|
Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. Allosterically tunable, DNA-based switches triggered by heavy metals. J Am Chem Soc 2013; 135:13238-41. [PMID: 23971651 DOI: 10.1021/ja404653q] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we demonstrate the rational design of allosterically controllable, metal-ion-triggered molecular switches. Specifically, we designed DNA sequences that adopt two low energy conformations, one of which does not bind to the target ion and the other of which contains mismatch sites serving as specific recognition elements for mercury(II) or silver(I) ions. Both switches contain multiple metal binding sites and thus exhibit homotropic allosteric (cooperative) responses. As heterotropic allosteric effectors we employ single-stranded DNA sequences that either stabilize or destabilize the nonbinding state, enabling dynamic range tuning over several orders of magnitude. The ability to rationally introduce these effects into target-responsive switches could be of value in improving the functionality of DNA-based nanomachines.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome , Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | |
Collapse
|
17
|
Ding W, Deng W, Zhu H, Liang H. Metallo-toeholds: controlling DNA strand displacement driven by Hg(ii) ions. Chem Commun (Camb) 2013; 49:9953-5. [DOI: 10.1039/c3cc45373a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Guo Z, Wei Y, Yang R, Liu JH, Huang XJ. Hydroxylation/carbonylation carbonaceous microspheres: A route without the need for an external functionalization to a “hunter” of lead(II) for electrochemical detection. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.08.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Stobiecka M, Molinero AA, Chałupa A, Hepel M. Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon. Anal Chem 2012; 84:4970-8. [PMID: 22524145 DOI: 10.1021/ac300632u] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A molecular beacon (MB) with stem-loop (hairpin) DNA structure and with attached fluorophore-quencher pair at the ends of the strand has been applied to study the interactions of Hg(2+) ions with a thymine-thymine (T-T) mismatch in Watson-Crick base-pairs and the ligative disassembly of MB·Hg(2+) complex by Hg(2+) sequestration with small biomolecule ligands. In this work, a five base-pair stem with configuration 5'-GGTGG...CCTCC-3' for self-hybridization of MB has been utilized. In this configuration, the four GC base-pair binding energy is not sufficient to hybridize fully at intermediate temperatures and to form a hairpin MB conformation. The T-T mismatch built-in into the stem area can effectively bind Hg(2+) ions creating a bridge, T-Hg-T. We have found that the T-Hg-T bridge strongly enhances the ability of MB to hybridize, as evidenced by an unusually large MB melting temperature shift observed on bridge formation, ΔT(m) = +15.1 ± 0.5 °C, for 100 nM MB in MOPS buffer. The observed ΔT(m) is the largest of the ΔT(m) found for other MBs and dsDNA structures. By fitting the parameters of the proposed model of reversible MB interactions to the experimental data, we have determined the T-Hg-T bridge formation constant at 25 °C, K(1) = 8.92 ± 0.42 × 10(17) M(-1) from mercury(II) titration data and K(1) = 1.04 ± 0.51 × 10(18) M(-1) from the bridge disassembly data; ΔG° = -24.53 ± 0.13 kcal/mol. We have found that the biomarker of oxidative stress and cardiovascular disease, homocysteine (Hcys), can sequester Hg(2+) ions from the T-Hg-T complex and withdraw Hg(2+) ions from MB in the form of stable Hg(Hcys)(2)H(2) complexes. Both the model fitting and independent (1)H NMR results on the thymidine-Hg-Hcys system indicate also the high importance of 1:1 complexes. The high value of K(1) for T-Hg-T bridge formation enables analytical determinations of low concentrations of Hg(2+) (limit of detection LOD = 19 nM or 3.8 ppb, based on 3σ method) and Hcys (LOD = 23 nM, 3σ method). The conditional stability constants for Hg(Hcys)H(2)(2+) and Hg(Hcys)(2)H(2) at 52 °C have been determined, β(112) = 5.37 ± 0.3 × 10(46) M(-3), β(122) = 3.80 ± 0.6 × 10(68) M(-4), respectively.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676, United States
| | | | | | | |
Collapse
|
20
|
Wu Z, Jiang L, Zhu Y, Xu C, Ye Y, Wang X. Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1747-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Wei Y, Yang R, Yu XY, Wang L, Liu JH, Huang XJ. Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers. Analyst 2012; 137:2183-91. [PMID: 22421740 DOI: 10.1039/c2an15939b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have demonstrated highly selective and sensitive detection of Pb(II) and Cd(II) using a highly selective adsorptive porous magnesium oxide (MgO) nanoflowers. The MgO nanoflower-modified glassy carbon electrode was electrochemically characterized using cyclic voltammetry; and the anodic stripping voltammetric performance of bound Pb(II) and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The MgO nanoflower-modified electrode exhibited excellent sensing performance toward Pb(II) and Cd(II) that was never observed previously at bismuth (Bi)-based electrodes. Simultaneous additions of Pb(II) and Cd(II) were investigated in the linear range from 3.3 to 22 nM for Pb(II) and 40 to 140 nM for Cd(II), and detection limits of 2.1 pM and 81 pM were obtained, respectively. Some foreign ions, such as Cu(II), Zn(II) and Cr(III) do not interfere with the detection of Pb(II) and Cd(II). To the best of our knowledge, this is the first example of a highly adsorptive metal oxide with hierarchical micro/nanostructure that allows the detection of both Pb(II) and Cd(II) ions.
Collapse
Affiliation(s)
- Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Tang X, Liu H, Zou B, Tian D, Huang H. A fishnet electrochemical Hg2+sensing strategy based on gold nanoparticle-bioconjugate and thymine–Hg2+–thymine coordination chemistry. Analyst 2012; 137:309-11. [DOI: 10.1039/c1an15908a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Zhao ZQ, Chen X, Yang Q, Liu JH, Huang XJ. Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite. Chem Commun (Camb) 2012; 48:2180-2. [DOI: 10.1039/c1cc16735a] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|