1
|
Brett CMA. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022; 27:1497. [PMID: 35268599 PMCID: PMC8911593 DOI: 10.3390/molecules27051497] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/06/2023] Open
Abstract
Electrochemical impedance spectroscopy is finding increasing use in electrochemical sensors and biosensors, both in their characterisation, including during successive phases of sensor construction, and in application as a quantitative determination technique. Much of the published work continues to make little use of all the information that can be furnished by full physical modelling and analysis of the impedance spectra, and thus does not throw more than a superficial light on the processes occurring. Analysis is often restricted to estimating values of charge transfer resistances without interpretation and ignoring other electrical equivalent circuit components. In this article, the important basics of electrochemical impedance for electrochemical sensors and biosensors are presented, focussing on the necessary electrical circuit elements. This is followed by examples of its use in characterisation and in electroanalytical applications, at the same time demonstrating how fuller use can be made of the information obtained from complete modelling and analysis of the data in the spectra, the values of the circuit components and their physical meaning. The future outlook for electrochemical impedance in the sensing field is discussed.
Collapse
|
2
|
Nakatsuka N, Faillétaz A, Eggemann D, Forró C, Vörös J, Momotenko D. Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes. Anal Chem 2021; 93:4033-4041. [PMID: 33596063 DOI: 10.1021/acs.analchem.0c05038] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report artificial nanopores in the form of quartz nanopipettes with ca. 10 nm orifices functionalized with molecular recognition elements termed aptamers that reversibly recognize serotonin with high specificity and selectivity. Nanoscale confinement of ion fluxes, analyte-specific aptamer conformational changes, and related surface charge variations enable serotonin sensing. We demonstrate detection of physiologically relevant serotonin amounts in complex environments such as neurobasal media, in which neurons are cultured in vitro. In addition to sensing in physiologically relevant matrices with high sensitivity (picomolar detection limits), we interrogate the detection mechanism via complementary techniques such as quartz crystal microbalance with dissipation monitoring and electrochemical impedance spectroscopy. Moreover, we provide a novel theoretical model for structure-switching aptamer-modified nanopipette systems that supports experimental findings. Validation of specific and selective small-molecule detection, in parallel with mechanistic investigations, demonstrates the potential of conformationally changing aptamer-modified nanopipettes as rapid, label-free, and translatable nanotools for diverse biological systems.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Alix Faillétaz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dominic Eggemann
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| |
Collapse
|
3
|
Pradhan R, Kalkal A, Jindal S, Packirisamy G, Manhas S. Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells. RSC Adv 2020; 11:798-806. [PMID: 35423705 PMCID: PMC8693377 DOI: 10.1039/d0ra09155c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/06/2020] [Indexed: 11/21/2022] Open
Abstract
In the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensing (ECIS) method over the frequency range of 100 Hz to 1 MHz. The results obtained from impedimetric biosensors indicate that tamoxifen caused a significant reduction in the number of HeLa cells on the electrode surfaces in a dose-dependent manner. Next, the impedance values recorded by the fabricated biosensors have been compared with the results obtained from the different conventional techniques such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live-dead cell assay, and flow cytometric analysis to estimate the cytotoxicity of tamoxifen. The impedimetric cytotoxicity of tamoxifen over the growth and proliferation of HeLa cells correlates well with the traditional methods. In addition, the IC50 values obtained from impedimetric data and MTT assay are comparable, signifying that the ECIS technique can be an alternative method to assess the cytotoxicity of different novel drugs. The working principle of the biosensor has been examined by scanning electron microscopy, indicating the detachment of cells from gold surfaces in a dose-dependent manner, signifying the decrease in impedance at higher drug doses.
Collapse
Affiliation(s)
- Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India +91-1332-273560 +91-1332-285490 +91-1332-285650
| | - Ashish Kalkal
- Department of Biotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| | - Shlok Jindal
- Department of Biotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India +91-1332-273560 +91-1332-285490 +91-1332-285650
- Department of Biotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| | - Sanjeev Manhas
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India +91-1332-285368 +91-1332-285147
| |
Collapse
|
4
|
Faria HAM, Zucolotto V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens Bioelectron 2019; 131:149-155. [DOI: 10.1016/j.bios.2019.02.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 11/29/2022]
|
5
|
|
6
|
Su Q, Vogt S, Nöll G. Langmuir Analysis of the Binding Affinity and Kinetics for Surface Tethered Duplex DNA and a Ligand-Apoprotein Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14738-14748. [PMID: 30005576 DOI: 10.1021/acs.langmuir.7b04347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, the hybridization and dehybridization of ssDNA with 20 bases at gold coated sensor surfaces modified with complementary 20 bases capture probe ssDNA was investigated at 18 °C by quartz crystal microbalance measurements with dissipation monitoring (QCM-D). A sequence of 20 base pairs with a melting temperature of about 64 °C was chosen, since in many biosensor studies the target molecules are DNA or RNA oligomers of similar length. It turned out that at the applied experimental conditions the DNA hybridization was irreversible, and therefore the hybridization and dehybridization process could not be described by the Langmuir model of adsorption. Nevertheless, quantitative dehybridization could be achieved by rinsing the sensor surface thoroughly with pure water. When in contrast the hybridization of a target with only 10 bases complementary to the outermost 10 bases of the 20 bases capture probe was studied, binding and unbinding were reversible, and the hybridization/dehybridization process could be satisfactorily described by the Langmuir model. For the 10 base pair sequence, the melting temperature was about 36 °C. Apparently, for Langmuir behavior, it is important that the experiments are applied at a temperature sufficiently close to the melting temperature of the sequence under investigation to ensure that at least traces of the target molecules are unhybridized (i.e., there needs to be an equilibrium between hybridized and dehybridized target molecules). To validate the reliability of our experimental approach we also studied the reconstitution and disassembly of the flavoprotein dodecin at flavin-terminated DNA monolayers, as according to previous studies it is assumed that the apododecin-flavin system can be well described by the Langmuir model. As a result, this assumption could be verified. Using three different approaches, KD values were obtained that differ not more than by a factor of 4.
Collapse
Affiliation(s)
- Qiang Su
- Organic Chemistry, Chem. Biol. Dept., Faculty IV , Siegen University , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Stephan Vogt
- Organic Chemistry, Chem. Biol. Dept., Faculty IV , Siegen University , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Gilbert Nöll
- Organic Chemistry, Chem. Biol. Dept., Faculty IV , Siegen University , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| |
Collapse
|
7
|
Heinrich F, Riedel M, Lisdat F. Detection of abasic DNA by means of impedance spectroscopy. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Li N, Larin EM, Kerman K. A Miniaturized Impedimetric Immunosensor for the Competitive Detection of Adrenocorticotropic Hormone. SENSORS 2017; 17:s17122836. [PMID: 29215565 PMCID: PMC5751679 DOI: 10.3390/s17122836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 01/12/2023]
Abstract
Adrenocorticotropic hormone (ACTH) plays an essential role in regulating corticosteroid hormone production, which has important functions in a myriad of critical physiological functions. In this proof-of-concept study, a miniaturized immunosensor was developed for the highly sensitive detection of ACTH using electrochemical impedance spectroscopy (EIS) in connection with disposable screen-printed gold electrodes (SPGEs). A film of 3,3′-dithiobis[sulfosuccinimidylpropionate] (DTSSP) was prepared to immobilize anti-ACTH antibodies covalently on the nanostructured SPGE surface. The surface-immobilized anti-ACTH antibodies captured the biotinylated ACTH (biotin-ACTH) and non-labelled ACTH for the competitive immunoassay. After coupling of a streptavidin-alkaline phosphatase conjugate (Streptavidin-ALP), the bio-catalysed precipitation of an insoluble and insulating product onto the sensing interface changed the charge transfer resistance (Rct) characteristics significantly. The detection limit of 100 fg/mL was determined for ACTH in a 5 μL sample volume, which indicated that this versatile platform can be easily adapted for miniaturized electrochemical immunosensing of cancer marker biomolecules. High selectivity and sensitivity of our immunoassay to detect ACTH in real samples demonstrated its promising potential for future development and applications using clinical samples.
Collapse
Affiliation(s)
- Nan Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Egor M Larin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
9
|
Obaje EA, Cummins G, Schulze H, Mahmood S, Desmulliez MP, Bachmann TT. Carbon screen-printed electrodes on ceramic substrates for label-free molecular detection of antibiotic resistance. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/jin2.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eleojo A. Obaje
- Division of Infection and Pathway Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine; The University of Edinburgh; Chancellor's Building, 49 Little France Crescent Edinburgh EH16 4SB Scotland UK
| | - Gerard Cummins
- School of Engineering and Physical Sciences, MIcroSystems Engineering Centre; Heriot-Watt University; Edinburgh EH14 4AS Scotland UK
| | - Holger Schulze
- Division of Infection and Pathway Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine; The University of Edinburgh; Chancellor's Building, 49 Little France Crescent Edinburgh EH16 4SB Scotland UK
| | - Salman Mahmood
- School of Engineering and Physical Sciences, MIcroSystems Engineering Centre; Heriot-Watt University; Edinburgh EH14 4AS Scotland UK
| | - Marc P.Y. Desmulliez
- School of Engineering and Physical Sciences, MIcroSystems Engineering Centre; Heriot-Watt University; Edinburgh EH14 4AS Scotland UK
| | - Till T. Bachmann
- Division of Infection and Pathway Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine; The University of Edinburgh; Chancellor's Building, 49 Little France Crescent Edinburgh EH16 4SB Scotland UK
| |
Collapse
|
10
|
Huang JMY, Henihan G, Macdonald D, Michalowski A, Templeton K, Gibb AP, Schulze H, Bachmann TT. Rapid Electrochemical Detection of New Delhi Metallo-beta-lactamase Genes To Enable Point-of-Care Testing of Carbapenem-Resistant Enterobacteriaceae. Anal Chem 2015; 87:7738-45. [PMID: 26121008 DOI: 10.1021/acs.analchem.5b01270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alarming rate at which antibiotic resistance is occurring in human pathogens causes a pressing need for improved diagnostic technologies aimed at rapid detection and point-of-care testing to support quick decision making regarding antibiotic therapy and patient management. Here, we report the successful development of an electrochemical biosensor to detect bla(NDM), the gene encoding the emerging New Delhi metallo-beta-lactamase, using label-free electrochemical impedance spectroscopy (EIS). The presence of this gene is of critical concern because organisms harboring bla(NDM) tend to be multiresistant, leaving very few treatment options. For the EIS assay, we used a bla(NDM)-specific PNA probe that was designed by applying a new approach that combines in silico probe design and fluorescence-based DNA microarray validation with electrochemical testing on gold screen-printed electrodes. The assay was successfully demonstrated for synthetic targets (LOD = 10 nM), PCR products (LOD = 100 pM), and direct, amplification-free detection from a bla(NDM)-harboring plasmid. The biosensor's specificity, preanalytical requirements, and performance under ambient conditions were demonstrated and successfully proved its suitability for further point-of-care test development.
Collapse
Affiliation(s)
- Jimmy Ming-Yuan Huang
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K.,§Emergency Department, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Grace Henihan
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Daniel Macdonald
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Annette Michalowski
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Kate Templeton
- ‡Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, U.K
| | - Alan P Gibb
- ‡Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, U.K
| | - Holger Schulze
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Till T Bachmann
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| |
Collapse
|
11
|
Trashin S, de Jong M, Breugelmans T, Pilehvar S, De Wael K. Label-Free Impedance Aptasensor for Major Peanut Allergen Ara h 1. ELECTROANAL 2014. [DOI: 10.1002/elan.201400365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Riedel M, Kartchemnik J, Schöning MJ, Lisdat F. Impedimetric DNA Detection—Steps Forward to Sensorial Application. Anal Chem 2014; 86:7867-74. [DOI: 10.1021/ac501800q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marc Riedel
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Julia Kartchemnik
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Michael J. Schöning
- Institute
of Nano- and Biotechnologies, University of Applied Sciences Aachen, Heinrich-Mußmann-Strasse 1, 52428 Jülich, Germany
| | - Fred Lisdat
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| |
Collapse
|
13
|
Regan EM, Hallett AJ, Wong LC, Saeed IQ, Langdon-Jones EE, Buurma NJ, Pope SJ, Estrela P. A novel cobalt complex for enhancing amperometric and impedimetric DNA detection. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Grützke S, Abdali S, Schuhmann W, Gebala M. Detection of DNA hybridization using electrochemical impedance spectroscopy and surface enhanced Raman scattering. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Kaatz M, Schulze H, Ciani I, Lisdat F, Mount AR, Bachmann TT. Alkaline phosphatase enzymatic signal amplification for fast, sensitive impedimetric DNA detection. Analyst 2012; 137:59-63. [DOI: 10.1039/c1an15767a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Gebala M, Schuhmann W. Understanding properties of electrified interfaces as a prerequisite for label-free DNA hybridization detection. Phys Chem Chem Phys 2012; 14:14933-42. [DOI: 10.1039/c2cp42382k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Label-free detection of protein–DNA interactions using electrochemical impedance spectroscopy. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.06.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|