1
|
Płócienniczak-Bywalska P, Rębiś T, Leda A, Milczarek G. Lignosulfonate-Assisted In Situ Deposition of Palladium Nanoparticles on Carbon Nanotubes for the Electrocatalytic Sensing of Hydrazine. Molecules 2023; 28:7076. [PMID: 37894555 PMCID: PMC10609262 DOI: 10.3390/molecules28207076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This paper presents a novel modified electrode for an amperometric hydrazine sensor based on multi-walled carbon nanotubes (MWCNTs) modified with lignosulfonate (LS) and decorated with palladium nanoparticles (NPds). The MWCNT/LS/NPd hybrid was characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The electrochemical properties of the electrode material were evaluated using cyclic voltammetry and chronoamperometry. The results showed that GC/MWCNT/LS/NPd possesses potent electrocatalytic properties towards the electro-oxidation of hydrazine. The electrode demonstrated exceptional electrocatalytic activity coupled with a considerable sensitivity of 0.166 μA μM-1 cm-2. The response was linear from 3.0 to 100 µM L-1 and 100 to 10,000 µM L-1, and the LOD was quantified to 0.80 µM L-1. The efficacy of the modified electrode as an electrochemical sensor was corroborated in a study of hydrazine determination in water samples.
Collapse
Affiliation(s)
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Amanda Leda
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| |
Collapse
|
2
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. An Electrochemical Screen-Printed Sensor Based on Gold-Nanoparticle-Decorated Reduced Graphene Oxide-Carbon Nanotubes Composites for the Determination of 17-β Estradiol. BIOSENSORS 2023; 13:bios13040491. [PMID: 37185565 PMCID: PMC10136424 DOI: 10.3390/bios13040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
In this study, a screen-printed electrode (SPE) modified with gold-nanoparticle-decorated reduced graphene oxide-carbon nanotubes (rGO-AuNPs/CNT/SPE) was used for the determination of estradiol (E2). The AuNPs were produced through an eco-friendly method utilising plant extract, eliminating the need for severe chemicals, and remove the requirements of sophisticated fabrication methods and tedious procedures. In addition, rGO-AuNP serves as a dispersant for the CNT to improve the dispersion stability of CNTs. The composite material, rGO-AuNPs/CNT, underwent characterisation through scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The electrochemical performance of the modified SPE for estradiol oxidation was characterised using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The rGO-AuNPs/CNT/SPE exhibited a notable improvement compared to bare/SPE and GO-CNT/SPE, as evidenced by the relative peak currents. Additionally, we employed a baseline correction algorithm to accurately adjust the sensor response while eliminating extraneous background components that are typically present in voltammetric experiments. The optimised estradiol sensor offers linear sensitivity from 0.05-1.00 µM, with a detection limit of 3 nM based on three times the standard deviation (3δ). Notably, this sensing approach yields stable, repeatable, and reproducible outcomes. Assessment of drinking water samples indicated an average recovery rate of 97.5% for samples enriched with E2 at concentrations as low as 0.5 µM%, accompanied by only a modest coefficient of variation (%CV) value of 2.7%.
Collapse
Affiliation(s)
- Auwal M Musa
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
| | - Janice Kiely
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Richard Luxton
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Kevin C Honeychurch
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
3
|
Promsuwan K, Thongtawat J, Limbut W. Porous palladium-poly(3,4-ethylenedioxythiophene)-coated carbon microspheres/graphene nanoplatelet-modified electrode for flow-based-amperometric hydrazine sensor. Mikrochim Acta 2020; 187:539. [PMID: 32876787 DOI: 10.1007/s00604-020-04470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
A highly stable flow-injection amperometric hydrazine sensor was developed based on a glassy carbon electrode modified with palladium-poly(3,4-ethylene dioxythiophene) coated on carbon microspheres/graphene nanoplatelets (Pd-PEDOT@CM/GNP/GCE). The Pd-PEDOT@CM/GNP composite was characterized by scanning electron microscopy and energy-dispersive x-ray analysis (SEM/EDX). The modified GCE was electrochemically characterized using cyclic voltammetry and chronoamperometry. The electrocatalytic activity of the Pd-PEDOT@CM/GNP/GCE toward hydrazine oxidation was significantly better than the activity of a bare GCE, a CM/GCE, a GNP/GCE, a Pd-PEDOT/GCE, and a Pd-PEDOT@CM/GCE. The sensor operated best at a low working potential of + 0.10 V (vs. Ag/AgCl). Under optimal conditions, sensitivity toward hydrazine detection and operational stability (601 injections/one electrode preparation) were excellent. The response was linear from 1.0 to 100 μmol L-1 and from 100 to 5000 μmol L-1 with a detection limit of 0.28 ± 0.02 μmol L-1 and high sensitivity of 0.200 μA μM-1 cm-2. The sensor showed good repeatability (relative standard deviation (RSD) < 1.4%, n = 15), reproducibility (RSD < 2.7%, n = 6), and anti-interference characteristics toward hydrazine detection. The feasibility of the electrochemical sensor was proved by the successful determination of hydrazine in water samples, and the results were in good agreement with those obtained from spectrophotometric analysis. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jariya Thongtawat
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
4
|
Lu Y, Wu D, Li Z, Lin Q, Ma X, Zhang Z, Xiang S. MOFs-Derived Nano-CuO Modified Electrode as a Sensor for Determination of Hydrazine Hydrate in Aqueous Medium. SENSORS (BASEL, SWITZERLAND) 2019; 20:E140. [PMID: 31878254 PMCID: PMC6982735 DOI: 10.3390/s20010140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
Abstract
It very important to be able to efficiently detect hydrazine hydrate in an aqueous medium due to its high toxicity. Here, we have proposed a new idea: to construct a sensor for the rapid determination of hydrazine hydrate based on the nano-CuO derived by controlled pyrolysis of HKUST-1 [Cu3(BTC)2(H2O)3]. The as-prepared CuO at 400 °C possesses a uniform appearance with nano-structure via SEM images, and the nano-CuO-400 has exhibited excellent electrocatalytic activity towards hydrazine oxidation. Amperometric i-t curves shows the peak current as linearly proportional to the hydrazine concentration within 1.98-169.3 μmol L-1 and 232-2096 μmol L-1 with the detection limit of 2.55 × 10-8 mol L-1 and 7.01 × 10-8 mol L-1, respectively. Moreover, the sensor constructed in the experiment shows good selectivities, and it is feasible to determining actual water samples.
Collapse
Affiliation(s)
- Yaqi Lu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
- College of Chemistry and Materials Science, Longyan University, No.1 North Dongxiao Rd., Longyan 364012, China
| | - Dan Wu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
| | - Ziyin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
| | - Quanjie Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China; (Y.L.); (D.W.); (Z.L.); (Q.L.); (Z.Z.)
| |
Collapse
|
5
|
Au-Pd alloy nanoparticles catalyze the colorimetric detection of hydrazine with methylene blue. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Brainina K, Stozhko N, Bukharinova M, Vikulova E. Nanomaterials: Electrochemical Properties and Application in Sensors. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2018-8050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The unique properties of nanoparticles make them an extremely valuable modifying material, being used in electrochemical sensors. The features of nanoparticles affect the kinetics and thermodynamics of electrode processes of both nanoparticles and redox reactions occurring on their surface. The paper describes theoretical background and experimental studies of these processes. During the transition from macro- to micro- and nanostructures, the analytical characteristics of sensors modify. These features of metal nanoparticles are related to their size and energy effects, which affects the analytical characteristics of developed sensors. Modification of the macroelectrode with nanoparticles and other nanomaterials reduces the detection limit and improves the degree of sensitivity and selectivity of measurements. The use of nanoparticles as transducers, catalytic constituents, parts of electrochemical sensors for antioxidant detection, adsorbents, analyte transporters, and labels in electrochemical immunosensors and signal-generating elements is described.
Collapse
|
7
|
Amin HMA, El-Kady MF, Atta NF, Galal A. Gold Nanoparticles Decorated Graphene as a High Performance Sensor for Determination of Trace Hydrazine Levels in Water. ELECTROANAL 2018. [DOI: 10.1002/elan.201800125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hatem M. A. Amin
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Maher F. El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute; University of California, Los Angeles (UCLA); Los Angeles, CA 90095 United States
| | - Nada F. Atta
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmed Galal
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| |
Collapse
|
8
|
Kubendhiran S, Sakthivel R, Chen SM, Yeah QJ, Mutharani B, Thirumalraj B. “Design of novel WO3/CB nanohybrids” An affordable and efficient electrochemical sensor for the detection of multifunctional flavonoid rutin. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00028j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CB/WO3 nanohybrid-modified SPCE was applied for the electrochemical determination of rutin.
Collapse
Affiliation(s)
- Subbiramaniyan Kubendhiran
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Qin-Jin Yeah
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Bhuvanenthiran Mutharani
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
- Department of Chemical Engineering
| |
Collapse
|
9
|
Cinti S, Mazzaracchio V, Cacciotti I, Moscone D, Arduini F. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M ®. SENSORS 2017; 17:s17102267. [PMID: 28972566 PMCID: PMC5676850 DOI: 10.3390/s17102267] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022]
Abstract
Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.
Collapse
Affiliation(s)
- Stefano Cinti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Ilaria Cacciotti
- Department of Engineering, University of Rome Niccolò Cusano, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Danila Moscone
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Fabiana Arduini
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
10
|
Ali SM, Emran KM, Al lehaibi HA. Enhancement of the Electrocatalytic Activity of Conducting Polymer/Pd Composites for Hydrazine Oxidation by Copolymerization. INT J ELECTROCHEM SC 2017; 12:8733-8744. [DOI: 10.20964/2017.09.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Sakthinathan S, Kubendhiran S, Chen SM, Sireesha P, Karuppiah C, Su C. Functionalization of Reduced Graphene Oxide with β-cyclodextrin Modified Palladium Nanoparticles for the Detection of Hydrazine in Environmental Water Samples. ELECTROANAL 2016. [DOI: 10.1002/elan.201600339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Subramanian Sakthinathan
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
| | - Subbiramaniyan Kubendhiran
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
| | - Pedaballi Sireesha
- Institute of Organic and Polymeric Materials; National Taipei University of Technology; Taipei 106 Taiwan ROC
| | - Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
- Department of Chemistry; National Taiwan University; No. 1, Section 4, Roosevelt Road Taipei 106 Taiwan ROC
| | - Chaochin Su
- Institute of Organic and Polymeric Materials; National Taipei University of Technology; Taipei 106 Taiwan ROC
| |
Collapse
|
12
|
Heydari H, Gholivand MB, Abdolmaleki A. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:16-24. [DOI: 10.1016/j.msec.2016.04.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
|
13
|
High Yield Synthesis of Hydroxyapatite (HAP) and Palladium Doped HAP via a Wet Chemical Synthetic Route. Catalysts 2016. [DOI: 10.3390/catal6080119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Kavian S, Azizi SN, Ghasemi S. Electrocatalytic detection of hydrazine on synthesized nanozeolite-supported Ag nanoparticle-modified carbon paste electrode at a negative potential in an alkaline medium. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Majumder S, Saha B, Dey S, Mondal R, Kumar S, Banerjee S. A highly sensitive non-enzymatic hydrogen peroxide and hydrazine electrochemical sensor based on 3D micro-snowflake architectures of α-Fe2O3. RSC Adv 2016. [DOI: 10.1039/c6ra10470c] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present work, well crystalline 3D micro-snowflake structured α-Fe2O3 has been successfully synthesized on a large scale via a simple hydrothermal reaction by hydrolysis of a K3Fe(CN)6 precursor.
Collapse
Affiliation(s)
- S. Majumder
- Saha Institute of Nuclear Physics
- Kolkata–700064
- India
- Department of Physics
- Jadavpur University
| | - B. Saha
- Saha Institute of Nuclear Physics
- Kolkata–700064
- India
| | - S. Dey
- Department of Physics
- Jadavpur University
- Kolkata–700032
- India
| | - R. Mondal
- Department of Physics
- Jadavpur University
- Kolkata–700032
- India
| | - S. Kumar
- Department of Physics
- Jadavpur University
- Kolkata–700032
- India
| | - S. Banerjee
- Saha Institute of Nuclear Physics
- Kolkata–700064
- India
| |
Collapse
|
16
|
Malik P, Srivastava M, Verma R, Kumar M, Kumar D, Singh J. Nanostructured SnO 2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:432-41. [DOI: 10.1016/j.msec.2015.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/22/2015] [Indexed: 11/16/2022]
|
17
|
Gu X, Li X, Wu S, Shi J, Jiang G, Jiang G, Tian S. A sensitive hydrazine hydrate sensor based on a mercaptomethyl-terminated trinuclear Ni(ii) complex modified gold electrode. RSC Adv 2016. [DOI: 10.1039/c5ra23809a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A mercapto-terminated trinuclear Ni(ii) complex was synthesized and used as an electrocatalyst for the detection of hydrazine hydrate.
Collapse
Affiliation(s)
- Xuefang Gu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| | - Xian Li
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| | - Sijie Wu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| | - Jian Shi
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| | - Guoqing Jiang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| | - Guomin Jiang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| | - Shu Tian
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226007
- P. R. China
| |
Collapse
|
18
|
Use of the oxidizing effect of copper (II) to determine 2,4-dinitrophenylhydrazine at glassy electrode by chronoamperometry. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Alzahrani HA, Black JJ, Goonetilleke D, Panchompoo J, Aldous L. Combining thermogalvanic corrosion and thermogalvanic redox couples for improved electrochemical waste heat harvesting. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Tolstopjatova EG, Kondratiev VV, Eliseeva SN. Multi-layer PEDOT:PSS/Pd composite electrodes for hydrazine oxidation. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2907-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Maringa A, Mashazi P, Nyokong T. Electrocatalytic activity of bimetallic Au–Pd nanoparticles in the presence of cobalt tetraaminophthalocyanine. J Colloid Interface Sci 2015; 440:151-61. [DOI: 10.1016/j.jcis.2014.10.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
|
22
|
Dutta S, Ray C, Mallick S, Sarkar S, Roy A, Pal T. Au@Pd core–shell nanoparticles-decorated reduced graphene oxide: a highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Adv 2015. [DOI: 10.1039/c5ra04817f] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An Aucore–Pdshell-decorated reduced graphene oxide nanocomposite is successfully employed for the electrochemical detection of low-level hydrazine in an aqueous solution.
Collapse
Affiliation(s)
- Soumen Dutta
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Chaiti Ray
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sourav Mallick
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sougata Sarkar
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Anindita Roy
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Tarasankar Pal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
23
|
Krittayavathananon A, Srimuk P, Luanwuthi S, Sawangphruk M. Palladium Nanoparticles Decorated on Reduced Graphene Oxide Rotating Disk Electrodes toward Ultrasensitive Hydrazine Detection: Effects of Particle Size and Hydrodynamic Diffusion. Anal Chem 2014; 86:12272-8. [DOI: 10.1021/ac503446q] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atiweena Krittayavathananon
- Department
of Chemical Engineering, Faculty of Engineering, ‡Center for Advanced
Studies in Nanotechnology and Its Applications in Chemical, Food and
Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Pattarachai Srimuk
- Department
of Chemical Engineering, Faculty of Engineering, ‡Center for Advanced
Studies in Nanotechnology and Its Applications in Chemical, Food and
Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Santamon Luanwuthi
- Department
of Chemical Engineering, Faculty of Engineering, ‡Center for Advanced
Studies in Nanotechnology and Its Applications in Chemical, Food and
Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Montree Sawangphruk
- Department
of Chemical Engineering, Faculty of Engineering, ‡Center for Advanced
Studies in Nanotechnology and Its Applications in Chemical, Food and
Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
24
|
A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Shamsipur M, Karimi Z, Tabrizi MA, Shamsipur A. Electrocatalytic Determination of Traces of Hydrazine by a Glassy Carbon Electrode Modified with Palladium-Gold Nanoparticles. ELECTROANAL 2014. [DOI: 10.1002/elan.201400187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Maringa A, Nyokong T. Behavior of Palladium Nanoparticles in the Absence or Presence of Cobalt Tetraaminophthalocyanine for the Electrooxidation of Hydrazine. ELECTROANAL 2014. [DOI: 10.1002/elan.201400028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Rastogi PK, Ganesan V, Krishnamoorthi S. Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.148] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Lawrence K, Baker CL, James TD, Bull SD, Lawrence R, Mitchels JM, Opallo M, Arotiba OA, Ozoemena KI, Marken F. Functionalized Carbon Nanoparticles, Blacks and Soots as Electron-Transfer Building Blocks and Conduits. Chem Asian J 2014; 9:1226-41. [DOI: 10.1002/asia.201301657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/05/2022]
|
29
|
Yang YJ, Li W, Wu X. Copper sulfide|reduced graphene oxide nanocomposite for detection of hydrazine and hydrogen peroxide at low potential in neutral medium. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Chou YC, Tai CY, Lee JF, Chan TS, Zen JM. A nanostructured AuCu3 alloy electrode for highly sensitive detection of hydrazine at low potential in neutral medium. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta 2013; 115:214-21. [PMID: 24054582 DOI: 10.1016/j.talanta.2013.04.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
A novel gold nanoparticle-modified graphite pencil electrode (AuNP-GPE) is prepared just by immersing a bare GPE in AuNP solution, followed by heating for 15 min. The bare and modified GPEs are characterized by FE-SEM imaging and cyclic voltammetry. The AuNP-GPEs showed excellent electrocatalytic activities with respect to hydrazine oxidation, with good reproducibility. To reduce the quantification and detection limits, and increase the hydrazine sensitivity, the pH and square wave voltammetry parameters are optimized. A square wave voltammetry study as a function of the hydrazine concentration showed that the AuNP-GPE detector's quantification limit was 100 nmol L(-1) hydrazine, much lower than the value obtained using amperometry (10 µmol L(-1)). The limits of detection (at 3σ) for hydrazine sensing at AuNP-GPEs using square wave voltammetry and amperometry were 42 nmol L(-1) and 3.07 µmol L(-1). Finally, the modified electrode was used to determine the hydrazine concentration in drinking water, and satisfactory results are obtained. This simple, rapid, low-cost method for fabricating a modified electrode is an attractive approach to the development of new sensors.
Collapse
|
32
|
|
33
|
Kondratiev VV, Babkova TA, Tolstopjatova EG. PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2019-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Properties of Pd nanoparticles-embedded polyaniline multilayer film and its electrocatalytic activity for hydrazine oxidation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.122] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Pearson A, O'Mullane AP, Bhargava SK, Bansal V. Comparison of nanostructures obtained from galvanic replacement in water and an ionic liquid for applications in electrocatalysis and SERS. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Panchompoo J, Aldous L, Baker M, Wallace MI, Compton RG. One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching. Analyst 2012; 137:2054-62. [PMID: 22421892 DOI: 10.1039/c2an16261j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon black (CB) nanoparticles modified with fluorescein, a highly fluorescent molecule, were prepared using a facile and efficient methodology. Simply stirring CB in aqueous solution containing fluorescein resulted in the strong physisorption of fluorescein onto the CB surface. The resulting Fluorescein/CB was then characterised by means of X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), fluorescence microscopy and fluorescence spectroscopy. The optimum experimental conditions for fluorescence of Fluorescein/CB viz. fluorescence excitation and emission wavelengths, O(2) removal and the amount of Fluorescein/CB used, were investigated. The Fluorescein/CB was used as a fluorescent probe for the sensitive detection of Pd(II) in water, based on fluorescence quenching. The results demonstrated that the fluorescence intensity of Fluorescein/CB decreased with increasing Pd(II) concentration, and the fluorescence quenching process could be described by the Stern-Volmer equation. The limit of detection (LOD) for the fluorescence quenching of Fluorescein/CB by Pd(II) in aqueous solution was found to be 1.07 μM (based on 3σ). Last, approaches were studied for the removal of Fe(III) which interferes with the fluorescence quenching of Fluorescein/CB. Complexation of Fe(III) with salicylic acid was used to enhance and control the selectivity of Fluorescein/CB sensor towards Pd(II) in the presence of Fe(III).
Collapse
Affiliation(s)
- Janjira Panchompoo
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | | | | | | | | |
Collapse
|
37
|
Panchompoo J, Aldous L, Compton RG. Irreversible uptake of palladium from aqueous systems using l-cysteine methyl ester physisorbed on carbon black. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04493h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|