1
|
Zhang Y, Zheng ZN, Lin XH, Liu AL, Lei Y. A homogeneous electrochemiluminescence immunoassay platform based on carbon quantum dots and magnetic beads enrichment for detection of thyroglobulin in serum. Talanta 2024; 276:126205. [PMID: 38718649 DOI: 10.1016/j.talanta.2024.126205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhen-Ni Zheng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Alipour Z, Haghighi B, Kamyabi MA. A novel electrochemiluminesence sensor based on silver prussian blue analogue/carboxylated sulfur‐doped graphitic carbon nitride nanocomposite for determination of lamotrigine. ELECTROANAL 2022. [DOI: 10.1002/elan.202100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Zhao S, Bu T, Yang K, Xu Z, Bai F, He K, Li L, Wang L. Immunochromatographic Assay Based on Polydopamine-Decorated Iridium Oxide Nanoparticles for the Rapid Detection of Salbutamol in Food Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28899-28907. [PMID: 34106688 DOI: 10.1021/acsami.1c06724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salbutamol (SAL), a β-2 adrenoreceptor agonist, is an unpopular addition to livestock and poultry, causing several side effects to human health. Thus, it is very important to develop a simple and rapid analytical method to screen SAL in the field of food safety. Here, we present an immunochromatographic assay (ICA) method for sensitively detecting SAL with polydopamine-decorated iridium oxide nanoparticles (IrO2@PDA NPs) as a signal tag. The IrO2@PDA with excellent hydrophilicity, biocompatibility, and stability was synthesized by oxidating self-polymerization of dopamine hydrochloride (DAH) on the surface of IrO2 NPs and used to label monoclonal antibodies (mAbs) through simple physical adsorption. Compared with IrO2 NPs, the IrO2@PDA also possessed superior optical properties and higher affinity with mAbs. With the proposed method, the limit of detection for SAL was 0.002 ng/mL, which was improved at least 24-fold and 180-fold compared with the IrO2 NPs-based ICA and conventional gold nanoparticles-based ICA, respectively. Furthermore, the SAL residuals in pork, pork liver, and beef were successfully detected by the developed biosensor and the recoveries ranged from 85.56% to 115.56%. Briefly, this work indicated that the powerful IrO2@PDA-based ICA can significantly improve detection sensitivity and has huge potential for accurate and sensitive detection of harmful small molecules analytes in food safety fields.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
4
|
Rahman MM, Lee DJ, Jo A, Yun SH, Eun JB, Im MH, Shim JH, Abd El-Aty AM. Onsite/on-field analysis of pesticide and veterinary drug residues by a state-of-art technology: A review. J Sep Sci 2021; 44:2310-2327. [PMID: 33773036 DOI: 10.1002/jssc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/08/2022]
Abstract
Pesticides and veterinary drugs are generally employed to control pests and insects in crop and livestock farming. However, remaining residues are considered potentially hazardous to human health and the environment. Therefore, regular monitoring is required for assessing and legislation of pesticides and veterinary drugs. Various approaches to determining residues in various agricultural and animal food products have been reported. Most analytical methods involve sample extraction, purification (cleanup), and detection. Traditional sample preparation is time-consuming labor-intensive, expensive, and requires a large amount of toxic organic solvent, along with high probability for the decomposition of a compound before the analysis. Thus, modern sample preparation techniques, such as the quick, easy, cheap, effective, rugged, and safe method, have been widely accepted in the scientific community for its versatile application; however, it still requires a laboratory setup for the extraction and purification processes, which also involves the utilization of a toxic solvent. Therefore, it is crucial to elucidate recent technologies that are simple, portable, green, quick, and cost-effective for onsite and infield residue detections. Several technologies, such as surface-enhanced Raman spectroscopy, quantum dots, biosensing, and miniaturized gas chromatography, are now available. Further, several onsite techniques, such as ion mobility-mass spectrometry, are now being upgraded; some of them, although unable to analyze field sample directly, can analyze a large number of compounds within very short time (such as time-of-flight and Orbitrap mass spectrometry). Thus, to stay updated with scientific advances and analyze organic contaminants effectively and safely, it is necessary to study all of the state-of-art technology.
Collapse
Affiliation(s)
- Md Musfiqur Rahman
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Ju Lee
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ara Jo
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seung Hee Yun
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology and BK 21 plus Program, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongbuk, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
He H, Sun T, Liu W, Xu Z, Han Z, Zhao L, Wu X, Ning B, Bai J. Highly sensitive detection of salbutamol by ALP-mediated plasmonic ELISA based on controlled growth of AgNPs. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Chen CX, Li YH, Zhou YL, Zhang JH, Wei QZ, Dai T, Wang L. Rapidly detecting antibiotics with magnetic nanoparticle coated CdTe quantum dots. RSC Adv 2020; 10:1966-1970. [PMID: 35494568 PMCID: PMC9048212 DOI: 10.1039/c9ra09894a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
A reusable magnetic-quantum dot material (MNP-SiO2-QD) with good magnetic properties and high fluorescence retention was successfully fabricated from linked magnetic nanoparticles and quantum dots. The resulting material can qualitatively and quantitatively detect four kinds of antibiotics and maintain high recovery rates.
Collapse
Affiliation(s)
- Chao-Xi Chen
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Yu-Han Li
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Yun-Lu Zhou
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Jun-Hao Zhang
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Qi-Zhuang Wei
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Tao Dai
- College of Chemistry & Environmental Protection Engineering, Southwest Minzu University 610041 China
| | - Lu Wang
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| |
Collapse
|
7
|
Highly sensitive immunochromatographic assay for qualitative and quantitative control of beta-agonist salbutamol and its structural analogs in foods. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Zhou JW, Zou XM, Song SH, Chen GH. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1307-1319. [PMID: 29378133 DOI: 10.1021/acs.jafc.7b05119] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The pesticide and veterinary drug residues brought by large-scale agricultural production have become one of the issues in the fields of food safety and environmental ecological security. It is necessary to develop the rapid, sensitive, qualitative and quantitative methodology for the detection of pesticide and veterinary drug residues. As one of the achievements of nanoscience, quantum dots (QDs) have been widely used in the detection of pesticide and veterinary drug residues. In these methodology studies, the used QD-signal styles include fluorescence, chemiluminescence, electrochemical luminescence, photoelectrochemistry, etc. QDs can also be assembled into sensors with different materials, such as QD-enzyme, QD-antibody, QD-aptamer, and QD-molecularly imprinted polymer sensors, etc. Plenty of study achievements in the field of detection of pesticide and veterinary drug residues have been obtained from the different combinations among these signals and sensors. They are summarized in this paper to provide a reference for the QD application in the detection of pesticide and veterinary drug residues.
Collapse
Affiliation(s)
- Jia-Wei Zhou
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| | - Xue-Mei Zou
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| | - Shang-Hong Song
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| | - Guan-Hua Chen
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| |
Collapse
|
9
|
Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2359-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Multiple signal amplified electrochemiluminescent immunoassay for brombuterol detection using gold nanoparticles and polyamidoamine dendrimers-silver nanoribbon. Anal Chim Acta 2016; 945:85-94. [DOI: 10.1016/j.aca.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
11
|
Ultrasensitive determination of 2,4,6-trinitrotoluene by exploiting the strongly enhanced electrochemiluminescence of an assembly between CdSe and graphene quantum dots and its quenching by TNT. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1993-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zhang X, Chu Y, Yang H, Zhao K, Li J, Du H, She P, Deng A. Ultrasensitive and Specific Detection of Salbutamol in Swine Feed, Meat, and Urine Samples by a Competitive Immunochromatographic Test Integrated with Surface-Enhanced Raman Scattering. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0533-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 2016; 408:7035-48. [DOI: 10.1007/s00216-016-9548-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
14
|
Gan T, Lv Z, Liu N, Sun J, Shi Z, Zhao A. Ultrasensitive Electrochemical Sensor for Maltol in Wines Using Graphene Oxide-Wrapped Amino-Functionalized Carbon Sphere as Sensing Electrode Materials. ELECTROANAL 2015. [DOI: 10.1002/elan.201500476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Cai F, Wang N, Dong T, Deng A, Li J. Dual-signal amplified electrochemiluminescence immunoassay for salbutamol based on quantum dots and gold nanoparticle-labeled horseradish peroxidase. Analyst 2015. [DOI: 10.1039/c5an00999e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-signal amplification was achieved by the employment of HRP and AuNPs, and led to a higher sensitivity and wider detection range.
Collapse
Affiliation(s)
- Fudong Cai
- College of Chemistry
- Chemical Engineering & Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Nan Wang
- College of Chemistry
- Chemical Engineering & Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Tiantian Dong
- College of Chemistry
- Chemical Engineering & Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Anping Deng
- College of Chemistry
- Chemical Engineering & Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jianguo Li
- College of Chemistry
- Chemical Engineering & Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
16
|
Lv X, Li Y, Yan T, Pang X, Hu L, Du B, Wei Q. An electrochemiluminescent immunosensor based on CdS–Fe3O4nanocomposite electrodes for the detection of Ochratoxin A. NEW J CHEM 2015. [DOI: 10.1039/c5nj00320b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A promising electrochemiluminescent immunosensor based on CdS–Fe3O4nanocomposites was developed for the detection of Ochratoxin A.
Collapse
Affiliation(s)
- Xiaohui Lv
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yueyun Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xuehui Pang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lihua Hu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
17
|
Wu P, Hou X, Xu JJ, Chen HY. Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chem Rev 2014; 114:11027-59. [DOI: 10.1021/cr400710z] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|