1
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
2
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
3
|
Effects of Hyperhomocysteinemia on the Platelet-Driven Contraction of Blood Clots. Metabolites 2021; 11:metabo11060354. [PMID: 34205914 PMCID: PMC8228611 DOI: 10.3390/metabo11060354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is associated with thrombosis, but the mechanistic links between them are not understood. We studied effects of homocysteine (Hcy) on clot contraction in vitro and in a rat model of HHcy. Incubation of blood with exogenous Hcy for 1 min enhanced clot contraction, while 15-min incubation led to a dose-dependent suppression of contraction. These effects were likely due to direct Hcy-induced platelet activation followed by exhaustion, as revealed by an increase in fibrinogen-binding capacity and P-selectin expression determined by flow cytometry. In the blood of rats with HHcy, clot contraction was enhanced at moderately elevated Hcy levels (10–50 μM), while at higher Hcy levels (>50 μM), the onset of clot contraction was delayed. HHcy was associated with thrombocytosis combined with a reduced erythrocyte count and hypofibrinogenemia. These data suggest that in HHcy, platelets get activated directly and indirectly, leading to enhanced clot contraction that is facilitated by the reduced content and resilience of fibrin and erythrocytes in the clot. The excessive platelet activation can lead to exhaustion and impaired contractility, which makes clots larger and more obstructive. In conclusion, HHcy modulates blood clot contraction, which may comprise an underappreciated pro- or antithrombotic mechanism.
Collapse
|
4
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
5
|
Hyperhomocysteinemia increases susceptibility to cortical spreading depression associated with photophobia, mechanical allodynia, and anxiety in rats. Behav Brain Res 2021; 409:113324. [PMID: 33915239 DOI: 10.1016/j.bbr.2021.113324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
Epidemiological data suggest that elevated homocysteine is associated with migraine with aura. However, how homocysteine contributes to migraine is still unclear. Here, we tested whether hyperhomocysteinemia (hHCY) promotes cortical spreading depression (CSD), a phenomenon underlying migraine with aura, and whether hHCY contributes to pain behavior. hHCY was induced by dietary methionine in female rats while the testing was performed on their 6-8week-old offspring. CSD and multiple unit activity (MUA) induced by KCl were recorded from the primary somatosensory cortex, S1, using multichannel electrodes. In hHCY rats, compared to control, we found: i) higher probability of CSD occurrence; ii) induction of CSD by lower concentrations of KCl; iii) faster horizontal propagation of CSD; iv) smaller CSD with longer duration; v) higher frequency of MUA at CSD onset along with slower reappearance. Rats with hHCY demonstrated high level of locomotor activity and grooming while spent less time in the central area of the open field, indicating anxiety. These animals showed light sensitivity and facial mechanical allodinia. Thus, hHCY acquired at birth promotes multiple features of migraine such as higher cortical excitability, mechanical allodynia, photophobia, and anxiety. Our results provide the first experimental explanation for the higher occurrence of migraine with aura in patients with hHCY.
Collapse
|
6
|
Maheshwari H, Vilà N, Herzog G, Walcarius A. Selective Detection of Cysteine at a Mesoporous Silica Film Electrode Functionalized with Ferrocene in the Presence of Glutathione. ChemElectroChem 2020. [DOI: 10.1002/celc.202000396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himanshu Maheshwari
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| |
Collapse
|
7
|
A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain 2019; 160:2798-2810. [DOI: 10.1097/j.pain.0000000000001669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Yang B, Li X, An J, Zhang H, Liu M, Cheng Y, Ding B, Li Y. Designing an "Off-On" Fluorescence Sensor Based on Cluster-Based Ca II-Metal-Organic Frameworks for Detection of l-Cysteine in Biological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9885-9895. [PMID: 31268335 DOI: 10.1021/acs.langmuir.9b01479] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, luminescent metal-organic framework (MOF) materials have attracted considerable attention in fluorescence sensing. In this essay, we prepared a new cluster-based CaII-MOFs {[Ca1.5(μ8-HL1)(DMF)2]·DMF}n (1) with good water dispersibility, excellent photoluminescence properties (FL quantum yield of 20.37%) and great fluorescence stability. Further, it was employed to design as an "off-on" fluorescence sensor for sensitive detection of l-cysteine. This proposed strategy was that fluorescence of CaII-MOFs 1 was quenched for providing a low fluorescence background by the introduction of Pb2+ forming the CaII-MOFs 1/Pb2+ hybrid system. The quenching effect could be ascribed to the static quenching mechanism because of the formation of ground-state complexes and coordination interactions between the free carboxyl of H4L1 ligands of CaII-MOFs 1 and Pb2+. Then, with the addition of l-cysteine into the CaII-MOFs 1/Pb2+ hybrid system, the fluorescence signal was immediately restored. This result was because the Pb2+ was gradually released from the hybrid system by chelation interactions between the -SH groups of l-cysteine and Pb2+. This method received a relative wide linear range varying from 0.05 to 40 μM and a low detection limit of 15 nM for detection of l-cysteine. This proposed strategy was also successfully applied to detect l-cysteine in human serum samples with satisfactory recoveries from 95.9 to 101.5%.
Collapse
Affiliation(s)
- Bin Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Xinshu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Jundan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Huimin Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Manman Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Yue Cheng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Yan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| |
Collapse
|
9
|
Prenatal hyperhomocysteinemia induces oxidative stress and accelerates ‘aging’ of mammalian neuromuscular synapses. Int J Dev Neurosci 2019; 75:1-12. [DOI: 10.1016/j.ijdevneu.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 01/17/2023] Open
|
10
|
Ma X, Wu G, Zhao Y, Yuan Z, Zhang Y, Xia N, Yang M, Liu L. A Turn-On Fluorescent Probe for Sensitive Detection of Cysteine in a Fully Aqueous Environment and in Living Cells. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1986468. [PMID: 30647984 PMCID: PMC6311829 DOI: 10.1155/2018/1986468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We reported here a turn-on fluorescent probe (1) for the detection of cysteine (Cys) by incorporating the recognition unit of 2,4-dinitrobenzenesulfonyl ester (DNBS) to a coumarin derivative. The structure of the obtained probe was confirmed by NMR and HRMS techniques. The probe shows a remarkable fluorescence off-on response (∼52-fold) by the reaction with Cys in 100% aqueous buffer. The sensing mechanism was verified by the HPLC test. Probe 1 also displays high selectivity towards Cys. The detection limit was calculated to be 23 nM. Moreover, cellular experiments demonstrated that the probe is highly biocompatible and can be used for monitoring intracellular Cys.
Collapse
Affiliation(s)
- Xiaohua Ma
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Guoguang Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yuehua Zhao
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zibo Yuan
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yu Zhang
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Ning Xia
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Mengnan Yang
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Lin Liu
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| |
Collapse
|
11
|
Hydrogen Sulfide Ameliorates Developmental Impairments of Rat Offspring with Prenatal Hyperhomocysteinemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2746873. [PMID: 30581528 PMCID: PMC6276483 DOI: 10.1155/2018/2746873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Maternal high levels of the redox active amino acid homocysteine—called hyperhomocysteinemia (hHCY)—can affect the health state of the progeny. The effects of hydrogen sulfide (H2S) treatment on rats with maternal hHCY remain unknown. In the present study, we characterized the physical development, reflex ontogeny, locomotion and exploratory activity, muscle strength, motor coordination, and brain redox state of pups with maternal hHCY and tested potential beneficial action of the H2S donor—sodium hydrosulfide (NaHS)—on these parameters. Our results indicate a significant decrease in litter size and body weight of pups from dams fed with methionine-rich diet. In hHCY pups, a delay in the formation of sensory-motor reflexes was observed. Locomotor activity tested in the open field by head rearings, crossed squares, and rearings of hHCY pups at all studied ages (P8, P16, and P26) was diminished. Exploratory activity was decreased, and emotionality was higher in rats with hHCY. Prenatal hHCY resulted in reduced muscle strength and motor coordination assessed by the paw grip endurance test and rotarod test. Remarkably, administration of NaHS to pregnant rats with hHCY prevented the observed deleterious effects of high homocysteine on fetus development. In rats with prenatal hHCY, the endogenous generation of H2S brain tissues was lower compared to control and NaHS administration restored the H2S level to control values. Moreover, using redox signaling assays, we found an increased level of malondialdehyde (MDA), the end product of lipid peroxidation, and decreased activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the brain tissues of rats of the hHCY group. Notably, NaHS treatment restored the level of MDA and the activity of SOD and GPx. Our data suggest that H2S has neuroprotective/antioxidant effects against homocysteine-induced neurotoxicity providing a potential strategy for the prevention of developmental impairments in newborns.
Collapse
|
12
|
Use of sequential injection analysis with lab-at-valve and an optical probe for simultaneous spectrophotometric determination of ascorbic acid and cysteine by mean centering of ratio kinetic profiles. Talanta 2018; 188:99-106. [DOI: 10.1016/j.talanta.2018.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/24/2022]
|
13
|
Ngamchuea K, Chaisiwamongkhol K, Batchelor-McAuley C, Compton RG. Chemical analysis in saliva and the search for salivary biomarkers – a tutorial review. Analyst 2018; 143:81-99. [DOI: 10.1039/c7an01571b] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A review of the uses of saliva biomarkers, detection methods and requirements for new biomarkers.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Korbua Chaisiwamongkhol
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | | | - Richard G. Compton
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
14
|
Yakovlev AV, Kurmashova E, Zakharov A, Sitdikova GF. Network-Driven Activity and Neuronal Excitability in Hippocampus of Neonatal Rats with Prenatal Hyperhomocysteinemia. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0450-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Xu H, Li C, Song D, Xu X, Zhao Y, Liu X, Su Z. Amperometric L
-cysteine Sensor Using a Gold Electrode Modified with Thiolated Catechol. ELECTROANAL 2017. [DOI: 10.1002/elan.201700162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haitao Xu
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
- College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 PR China
| | - Chaorong Li
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Dongcheng Song
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Xiaolin Xu
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 PR China
- Department of Chemistry; Brown University; Providence RI 02912 USA
| | - Xiaoying Liu
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Zhaohong Su
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
- Department of Chemistry; Brown University; Providence RI 02912 USA
| |
Collapse
|
16
|
González-Sánchez MI, Agrisuelas J, Valero E, Compton RG. Measurement of Total Antioxidant Capacity by Electrogenerated Iodine at Disposable Screen Printed Electrodes. ELECTROANAL 2017. [DOI: 10.1002/elan.201600797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- María Isabel González-Sánchez
- Department of Physical Chemistry, School of Industrial Engineering; University of Castilla-La Mancha, Campus Universitario s/n; 02071 Albacete Spain
| | - Jerónimo Agrisuelas
- Department of Physical Chemistry, School of Industrial Engineering; University of Castilla-La Mancha, Campus Universitario s/n; 02071 Albacete Spain
| | - Edelmira Valero
- Department of Physical Chemistry, School of Industrial Engineering; University of Castilla-La Mancha, Campus Universitario s/n; 02071 Albacete Spain
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ United Kingdom
| |
Collapse
|
17
|
Huang Y, Chen M, Li X, Zhang C. Voltammetric Separation and Determination of Glutathione and L-tyrosine with Chlorogenic Acid as an Electrocatalytic Mediator. ELECTROANAL 2017. [DOI: 10.1002/elan.201600688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Huang
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| | - Mei Chen
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| | - Cuiyun Zhang
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| |
Collapse
|
18
|
Sundaram S, Kadir MRA. A New Highly Conducting Carbon Black (CL-08) Modified Electrode Functionalized with Syringic Acid for Sensitive and Selective L-Cysteine Electrocatalysis at Low Potential. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition for sensitive and selective protein biosensing. Talanta 2016; 164:244-248. [PMID: 28107924 DOI: 10.1016/j.talanta.2016.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition (a Michael addition) for sensitive and selective protein (with thrombin as the model) biosensing is reported, with a detection limit down to 20 fM for thrombin. Briefly, the thiol addition reaction of a gold electrode-supported 1,6-hexanedithiol (HDT) with p-benzoquinone (BQ) yielded BQ-HDT/Au, and the similar reaction of thiolated thrombin aptamer (TTA) with activated BQ-HDT/Au under 0.3V led to formation of a gold electrode-supported novel electrochemical probe TTA-BQ-HDT/Au. The thus-prepared TTA-BQ-HDT/Au exhibits a pair of well-defined redox peaks of quinone moiety, and the TTA-thrombin interaction can sensitively decrease the electrochemical signal. Herein the thiol addition acts as an effective and convenient binding protocols for aptasensing, and a new method (electrochemical conversion of Michael addition complex for signal generation) for the fabrication of biosensor is presented. The cyclic voltammetry (CV) was used to characterize the film properties. In addition, the proposed amperometric aptasensor exhibits good sensitivity, selectivity, and reproducibility. The aptasensor also has acceptable recovery for detection in complex protein sample.
Collapse
|
20
|
Effects of Maternal Hyperhomocysteinemia on the Early Physical Development and Neurobehavioral Maturation of Rat Offspring. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0326-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Devadoss A, Kuragano A, Terashima C, Sudhagar P, Nakata K, Kondo T, Yuasa M, Fujishima A. Single-step electrospun TiO2–Au hybrid electrodes for high selectivity photoelectrocatalytic glutathione bioanalysis. J Mater Chem B 2016; 4:220-228. [DOI: 10.1039/c5tb01740h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-step electrospun Au nanoparticle decorated TiO2 nanofiber membrane served as effective photoanode for highly selective glutathione analysis with a photoelectrocatalytic oxidation process.
Collapse
Affiliation(s)
- Anitha Devadoss
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Asako Kuragano
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Chiaki Terashima
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - P. Sudhagar
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Kazuya Nakata
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Takeshi Kondo
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Makoto Yuasa
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Akira Fujishima
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| |
Collapse
|
22
|
Zabel R, Weber G. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin. Anal Bioanal Chem 2015; 408:1237-47. [DOI: 10.1007/s00216-015-9233-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
|
23
|
Lim CS, Hola K, Ambrosi A, Zboril R, Pumera M. Graphene and carbon quantum dots electrochemistry. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|