1
|
Jung HH, Yea J, Lee H, Jung HN, Jekal J, Lee H, Ha J, Oh S, Song S, Son J, Yu TS, Jung S, Lee C, Kwak J, Choi JP, Jang KI. Taste Bud-Inspired Single-Drop Multitaste Sensing for Comprehensive Flavor Analysis with Deep Learning Algorithms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46041-46053. [PMID: 37747959 DOI: 10.1021/acsami.3c09684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.
Collapse
Affiliation(s)
- Han Hee Jung
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyunjong Lee
- Department of Electrical Engineering and Computer Science, DGIST, Daegu 42988, Republic of Korea
| | - Han Na Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyeokjun Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Soojeong Song
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jieun Son
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Tae Sang Yu
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seunggyeom Jung
- School of Undergraduate Studies, DGIST, Daegu 42988 South Korea
| | - Chanhee Lee
- School of Undergraduate Studies, DGIST, Daegu 42988 South Korea
| | - Jeongho Kwak
- Department of Electrical Engineering and Computer Science, DGIST, Daegu 42988, Republic of Korea
| | - Jihwan P Choi
- Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Department of Electrical Engineering and Computer Science, DGIST, Daegu 42988, Republic of Korea
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Artificial Intelligence Major in Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
- Institute of Next-generation Semiconductor Convergence Technology, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
2
|
Cuartero M, Ruiz A, Galián M, Ortuño JA. Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters. SENSORS (BASEL, SWITZERLAND) 2022; 22:6204. [PMID: 36015961 PMCID: PMC9414189 DOI: 10.3390/s22166204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The present paper addresses the development and use of a new potentiometric electronic tongue for both qualitative and quantitative characterization of natural mineral waters. The electronic tongue is particularly related to the conductivity and ion content of/in the water sample. The analytical system is based on six ion-selective electrodes whose membranes are formulated to provide either cationic or anionic response and considering plasticizers with different dielectric constants (bis(2-ethylhexyl) sebacate, 2-nitrophenyl octyl ether or tricresylphosphate), while keeping the polymeric matrix, i.e., poly(vinyl chloride). Notably, the absence of any ionophore in the membrane provides a general response profile, i.e., no selectivity toward any special ion, which is convenient for the realization of an effective electronic tongue. The dynamic response of the tongue toward water samples of different chemical compositions and geographical locations has been obtained. At the optimized experimental conditions, the tongue presents acceptable repeatability and reproducibility (absence of hysteresis). The principal component analysis of the final potential values observed with the six electrodes allows for the differentiation and classification of the samples according to their conductivity, which is somehow related to the mineralization. Moreover, quantitative determination of the six main ions in the water samples (i.e., chloride, nitrate, hydrogen carbonate, sulfate, sodium, calcium, and magnesium) is possible by means of a simple linear calibration (and cross-validation) model.
Collapse
Affiliation(s)
- María Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Alberto Ruiz
- Department of Informatics and Systems, University of Murcia, 30100 Murcia, Spain
| | - Manuel Galián
- Department of Analytical Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Joaquín A. Ortuño
- Department of Analytical Chemistry, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
3
|
Dynamic Potentiometry with an Ion-Selective Electrode: A Tool for Qualitative and Quantitative Analysis of Inorganic and Organic Cations. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A study of the transient potential signals obtained with a cation-selective electrode based on an ion-exchanger was carried out for solutions of the following individual cations at different concentrations: H+, Li+, Na+, K+, Rb+, Mg2+, Ca2+, choline (Ch+), acetylcholine (AcCh+), and procaine (Pr+). Three different general types of transient signals were distinguished depending on the value of the selectivity coefficient of the corresponding ion. A principal component analysis (PCA) was performed on the signals, finding that the qualitative identification of the corresponding ion from the scores of two principal components is possible. The study was extended to the transient signals of solutions containing an analyte in the presence of an interfering ion. The PCA of the corresponding signal allows for the detection of the presence of interfering ions, thus avoiding biased results in the determination of the analyte. Moreover, the two principal components of the transient signals obtained for each of the ions at different concentrations allow for the construction of calibration graphs for the quantitative determination of the corresponding ion. All the transient signals obtained experimentally in this work can be reconstructed accurately from principal components and their corresponding scores.
Collapse
|
4
|
Miras M, García MS, Martínez V, Ortuño JÁ. Inexpensive ion-selective electrodes for the simultaneous monitoring of potassium and nitrate concentrations in nutrient solutions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3511-3520. [PMID: 34269358 DOI: 10.1039/d1ay00956g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fast, simple and inexpensive potentiometric method has been developed for the determination of the major ions potassium and nitrate in nutrient solutions, by means of ion-selective electrodes (ISEs) based on plasticized polyvinyl membranes containing an ion-exchanger. Tridodecylmethylammonium chloride (TDMACl) and potassium tetrakis(4-chlorophenyl)borate (KTClPB) were used as ion-exchangers for the nitrate and potassium electrodes, respectively. Electrode membranes built with different plasticizers, bis-[2-ethylhexyl]-sebacate (DOS), tricresyl phosphate (TCP) and 2-nitrophenyloctyl ether (NPOE), were tested, and NPOE was selected. The electrodes were calibrated over both wide and narrow concentration ranges and residual analysis was made. Based on the results of these calibrations, the method of standard addition was developed and found to be suitable for the simultaneous determination of potassium and nitrate in nutrient solutions. A large group of samples taken from different stages of hydroponic crops was analysed. Several approaches recommended for statistical comparisons of the results obtained by potentiometric and by reference methods were tested, obtaining satisfactory results. The potentiometric methodology developed is promising for monitoring the concentration of these essential nutrients in nutrient solutions.
Collapse
Affiliation(s)
- Marina Miras
- Department of Analytical Chemistry, University of Murcia, Faculty of Chemistry, Spain.
| | - María Soledad García
- Department of Analytical Chemistry, University of Murcia, Faculty of Chemistry, Spain.
| | - Vicente Martínez
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia 30100, Spain
| | - Joaquín Ángel Ortuño
- Department of Analytical Chemistry, University of Murcia, Faculty of Chemistry, Spain.
| |
Collapse
|
5
|
An electronic tongue for simultaneous determination of Ca 2+, Mg 2+, K + and NH 4+ in water samples by multivariate calibration methods. Talanta 2020; 217:121110. [PMID: 32498915 DOI: 10.1016/j.talanta.2020.121110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022]
Abstract
In this study, a multi ion-selective electrode system was developed for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ ions. The system, called electronic tongue, was used for the quantitative determination of these ions in different water samples. The measurement system was comprised of sixteen ion-selective electrodes, an Ag/AgCl double-junction reference electrode, and a sixteen-channel multi-potentiometer. In the fabrication process of the electronic tongue, an electrode body, which comprised eight ion-selective electrodes together on it, was designed. The obtained data were evaluated by using multivariate calibration methods such as Classical Least Squares (CLS), Principal Component Regression (PCR) and Partial Least Squares (PLS1). The parameters that influence the electronic tongue performance were investigated. Analyses were conducted in synthetic water samples and real water samples. Percentage recovery values in synthetic samples, which were calculated via PLS1, were found 101.35%, 102.41%, 100.04% and 99.23% for Ca2+, Mg2+, K+ and NH4+ respectively. The results, obtained from the electronic tongue and other analytical techniques, were compared and no significant difference was found between the results at 95% confidence level.
Collapse
|
6
|
Jung YH, Park B, Kim JU, Kim TI. Bioinspired Electronics for Artificial Sensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803637. [PMID: 30345558 DOI: 10.1002/adma.201803637] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Indexed: 05/23/2023]
Abstract
Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
7
|
Ghasemi-Varnamkhasti M, Apetrei C, Lozano J, Anyogu A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Sorvin M, Belyakova S, Stoikov I, Shamagsumova R, Evtugyn G. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks. Front Chem 2018; 6:134. [PMID: 29740577 PMCID: PMC5928141 DOI: 10.3389/fchem.2018.00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.
Collapse
Affiliation(s)
- Michail Sorvin
- Analytical Chemistry Department, A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Svetlana Belyakova
- Analytical Chemistry Department, A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan Stoikov
- Organic Chemistry Department, A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Rezeda Shamagsumova
- Analytical Chemistry Department, A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Gennady Evtugyn
- Analytical Chemistry Department, A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
9
|
Jiang H, Zhang M, Bhandari B, Adhikari B. Application of electronic tongue for fresh foods quality evaluation: A review. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1424184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongyao Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University,Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Benu Adhikari
- School of Applied Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
|
11
|
Zhao HM, Guo XN, Zhu KX. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem 2016; 217:28-36. [PMID: 27664604 DOI: 10.1016/j.foodchem.2016.08.062] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
To improve the nutritional, physical and flavor properties of wheat bran, yeast and lactic acid bacteria (LAB) were used for fermenting wheat bran in solid state. Appearance properties, nutritional properties, microstructure, hydration properties and flavor of raw bran and fermented bran were evaluated. After treatments, water extractable arabinoxylans were 3-4 times higher than in raw bran. Total dietary fiber and soluble dietary fiber increased after solid state fermentation. Over 20% of phytic acid was degraded. Microstructure changes and protein degradation were observed in fermented brans. Water holding capacity and water retention capacity of fermented brans were improved. Results suggest that solid state fermentation is an effective way to improve the properties of wheat brans.
Collapse
Affiliation(s)
- Hui-Min Zhao
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|