1
|
Devi WS, Kaur R, Sharma A, Thakur S, Mehta SK, Raja V, Ataya FS. Non-enzymatic g-C 3N 4 supported CuO derived-biochar based electrochemical sensors for trace level detection of malathion. Biosens Bioelectron 2024; 267:116808. [PMID: 39326319 DOI: 10.1016/j.bios.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Malathion (MALA), a widely used insecticide, even at trace levels exhibits deleterious effects towards respiratory tracts, and nervous system, necessitating its detection. Herein, we have offered non-enzymatic trace level monitoring of MALA using g-C3N4 supported CuO-derived biochar. The present B-CuO/g-C3N4 based electrochemical sensor is synthesized using hydrothermal approach followed by calcination at high temperature. The result unveiled the strong interactions, high charge separation efficiency, significant porosity leading to excellent electrochemically active surface area 9.88 × 10-5 cm2 with least charge transfer resistance (RCT) value of 35.2 K Ω. The B-CuO/g-C3N4 based nanocomposite offered excellent complex formation ability with MALA and square wave anodic stripping voltametric method (SWASV) generates an enhanced electrochemical signal due to oxidation of MALA. Following all necessary optimizations, the sensor was capable to exhibit limit of detection (LOD) value of 1.2 pg mL-1 with R2 = 0.968. The modified biosensor offered its potential towards detection of MALA in apple and tomato samples with a recovery ranging from 87.64 to 120.59%. This novel B-CuO/g-C3N4 ternary nanocomposite provides non-enzymatic detection of MALA having excellent electrochemical properties and hence opens new pathways for exploring the use of biochar in other electrochemical applications.
Collapse
Affiliation(s)
- Waribam Stella Devi
- Department of Chemistry, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India
| | - Ranjeet Kaur
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Aashima Sharma
- Deparment of Chemistry, Panjab University, Sector-14, Chandigarh, India
| | - Sakshi Thakur
- Department of Chemistry, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India
| | - S K Mehta
- Deparment of Chemistry, Panjab University, Sector-14, Chandigarh, India.
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Beigmoradi F, Rohani Moghadam M, Garkani-Nejad Z, Bazmandegan-Shamili A, Masoodi HR. Dual-template imprinted polymer electrochemical sensor for simultaneous determination of malathion and carbendazim using graphene quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5027-5037. [PMID: 37740360 DOI: 10.1039/d3ay01054f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Malathion (MAL) and carbendazim (CBZ) are organophosphate pesticides and fungicides, respectively. They are often used simultaneously in agriculture, and both have been shown to have harmful effects on humans and animals. Therefore, it is important to be able to measure both of these toxins simultaneously in order to assess their potential risks. This study aims to design a dual template electrochemical sensor using a cost-effective graphite-epoxy composite electrode (GECE) modified with molecularly imprinted polymers (MIPs) coated on graphene quantum dots (GQDs) for simultaneous detection of MAL and CBZ in real samples. GQDs were synthesized initially, and their surface was coated with MIPs that were formed using MAL and CBZ as the template molecules, ethylene glycol dimethyl acrylate as the cross-linker, and methacrylic acid as the functional monomer. The GQDs@MIP were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and X-ray scattering spectroscopy. Parameters affecting the sensor response, such as the percentage of GQDs@MIP in the fabricated electrode, the pH of the rebinding solution and analysis solution, and the incubation time, were optimized. The optimum pH values of the rebinding solution were verified using density functional theory (DFT) calculations. Under the optimized conditions, differential pulse voltammetry (DPV) response calibration curves of MAL and CBZ were generated, and the results showed that the sensor had a linear response to MAL in the range of 0.02-55.00 μM with a limit of detection (LOD) of 2 nM (S/N = 3) and to CBZ in the range of 0.02-45.00 μM with a low LOD of 1 nM (S/N = 3). The results also demonstrated the proposed sensor's long-term stability and anti-interference capability. The practical applicability of the fabricated electrode was evaluated for real sample analysis, and good recovery values were obtained.
Collapse
Affiliation(s)
- Fariba Beigmoradi
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Masoud Rohani Moghadam
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Zahra Garkani-Nejad
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hamid Reza Masoodi
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| |
Collapse
|
3
|
Tanwar S, Sharma A, Mathur D. A graphene quantum dots-glassy carbon electrode-based electrochemical sensor for monitoring malathion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:701-710. [PMID: 37346783 PMCID: PMC10280055 DOI: 10.3762/bjnano.14.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Graphene quantum dots (GQDs) were made via a hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV-visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray diffraction were used to characterize the morphological and structural properties of GQDs. An electrochemical sensor was developed by drop casting GQDs on a glassy carbon electrode (GCE). The sensor detects the organophosphate pesticide malathion in a selective and sensitive manner. Using cyclic voltammetry, the sensor's oxidation-reduction behavior was investigated. Electrochemical impedance spectroscopy was conducted to study the electrochemical properties of the modified the GQDs/GCE working electrode, which showed excellent charge transfer properties. We measured malathion in varying concentrations between 1 to 30 µM using differential pulse voltammetry, which resulted in a limit of detection of 0.62 nM. GQDs can thus be used to develop electrochemical sensors for the detection of pesticides in water.
Collapse
Affiliation(s)
- Sanju Tanwar
- Centre of Nanotechnology, Rajasthan Technical University, Kota, Rajasthan, India
| | - Aditi Sharma
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
| | - Dhirendra Mathur
- Centre of Nanotechnology, Rajasthan Technical University, Kota, Rajasthan, India
| |
Collapse
|
4
|
Hu H, Wu S, Wang C, Wang X, Shi X. Electrochemical behaviour of cellulose/reduced graphene oxide/carbon fiber paper electrodes towards the highly sensitive detection of amitrole. RSC Adv 2023; 13:1867-1876. [PMID: 36712608 PMCID: PMC9830654 DOI: 10.1039/d2ra07662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Amitrole is a non-selective triazole herbicide that is widespread used to control a variety of weeds in agriculture, but it may pollute the environment and do harm to organisms. Thus, it is of critical significance to enlist a low-cost, sensitive, stable and renewable method to detect amitrole. In this paper, electrochemical experiments were carried out using carbon fibers/reduced graphene oxide/cellulose paper electrodes, which demonstrated good electrocatalytic performance for amitrole detection. The electrochemical process of amitrole on the surface of the reduced paper electrode was a quasi-reversible reaction controlled by diffusion. Cyclic voltammetry and the amperometric i-t curve method were used for amitrole determination at a micro molar level and higher-concentration range with the following characteristics: linear range 5 × 10-6 mol L-1 to 3 × 10-5 mol L-1, detection limit 2.44 × 10-7 mol L-1. In addition, the relative standard deviation of repeatability is 3.74% and of stability is 4.68%. The reduced paper electrode with high sensitivity, low detection limit, good stability and repeatability provides novel ideas for on-site amitrole detection in food and agriculture.
Collapse
Affiliation(s)
- Hui Hu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan UniversityWuhan 430079China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and TechnologyWuhan 430081China
| | - Cheng Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of TechnologyGuangzhou 510640China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of TechnologyGuangzhou 510640China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan UniversityWuhan 430079China
| |
Collapse
|
5
|
Li P, Zhan H, Tao S, Xie Z, Huang J. Bio-inspired aptamers decorated gold nanoparticles enable visualized detection of malathion. Front Bioeng Biotechnol 2023; 11:1165724. [PMID: 36937762 PMCID: PMC10020530 DOI: 10.3389/fbioe.2023.1165724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Biosensors always respond to the targets of interest in a specific manner, employing biological or bio-mimic recognition elements such as antibodies and aptamers. Inspired by target recognition in nature, an aptamer-mediated, gold nanoparticle-based sensing approach is developed in this work for effective determination of malathion. The sensing system consists of negatively charged aptamer probes, and polycationic proteins, protamine, as well as exceptional colorimetric nanoprobes, barely gold nanoparticles (AuNPs). Protamine molecules bound to aptamer probes hinder the aggregation of AuNPs, while no such inhibition is maintained when aptamer-specific malathion is introduced into the solution, thus leading to the solution colour change from red to blue observable by the naked eye. The assay is accomplished via a mix-and-measure step within 40 min with a detection limit as low as 1.48 μg/L (3σ/s rule). The assay method also exhibits high selectivity and good applicability for the quantification of malathion in tap water with recovery rates of 98.9%-109.4%. Additionally, the good detection accuracy is also confirmed by the high-performance liquid chromatography method. Therefore, the non-enzymatic, label- and device-free characteristics make it a robust tool for malathion assay in agricultural, environmental, and medical fields.
Collapse
Affiliation(s)
- Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,China
| | - Haonan Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
| | - Sijian Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
| | - Zhuohao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,China
- *Correspondence: Jiahao Huang,
| |
Collapse
|
6
|
Kuswandi B, Hidayat MA, Noviana E. Paper-Based Electrochemical Biosensors for Food Safety Analysis. BIOSENSORS 2022; 12:1088. [PMID: 36551055 PMCID: PMC9775995 DOI: 10.3390/bios12121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, foodborne pathogens and other food contaminants are among the major contributors to human illnesses and even deaths worldwide. There is a growing need for improvements in food safety globally. However, it is a challenge to detect and identify these harmful analytes in a rapid, sensitive, portable, and user-friendly manner. Recently, researchers have paid attention to the development of paper-based electrochemical biosensors due to their features and promising potential for food safety analysis. The use of paper in electrochemical biosensors offers several advantages such as device miniaturization, low sample consumption, inexpensive mass production, capillary force-driven fluid flow, and capability to store reagents within the pores of the paper substrate. Various paper-based electrochemical biosensors have been developed to enable the detection of foodborne pathogens and other contaminants that pose health hazards to humans. In this review, we discussed several aspects of the biosensors including different device designs (e.g., 2D and 3D devices), fabrication techniques, and electrode modification approaches that are often optimized to generate measurable signals for sensitive detection of analytes. The utilization of different nanomaterials for the modification of electrode surface to improve the detection of analytes via enzyme-, antigen/antibody-, DNA-, aptamer-, and cell-based bioassays is also described. Next, we discussed the current applications of the sensors to detect food contaminants such as foodborne pathogens, pesticides, veterinary drug residues, allergens, and heavy metals. Most of the electrochemical paper analytical devices (e-PADs) reviewed are small and portable, and therefore are suitable for field applications. Lastly, e-PADs are an excellent platform for food safety analysis owing to their user-friendliness, low cost, sensitivity, and a high potential for customization to meet certain analytical needs.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Mochammad Amrun Hidayat
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
7
|
Alimova AA, Sitnikov VV, Pogorelov DI, Boyko ON, Vitkalova IY, Gureev AP, Popov VN. High Doses of Pesticides Induce mtDNA Damage in Intact Mitochondria of Potato In Vitro and Do Not Impact on mtDNA Integrity of Mitochondria of Shoots and Tubers under In Vivo Exposure. Int J Mol Sci 2022; 23:2970. [PMID: 35328391 PMCID: PMC8955856 DOI: 10.3390/ijms23062970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that pesticides are toxic for mitochondria of animals. The effect of pesticides on plant mitochondria has not been widely studied. The goal of this research is to study the impact of metribuzin and imidacloprid on the amount of damage in the mtDNA of potato (Solanum tuberosum L.) in various conditions. We developed a set of primers to estimate mtDNA damage for the fragments in three chromosomes of potato mitogenome. We showed that both metribuzin and imidacloprid considerably damage mtDNA in vitro. Imidacloprid reduces the rate of seed germination, but does not impact the rate of the growth and number of mtDNA damage in the potato shoots. Field experiments show that pesticide exposure does not induce change in aconitate hydratase activity, and can cause a decrease in the rate of H2O2 production. We can assume that the mechanism of pesticide-induced mtDNA damage in vitro is not associated with H2O2 production, and pesticides as electrophilic substances directly interact with mtDNA. The effect of pesticides on the integrity of mtDNA in green parts of plants and in crop tubers is insignificant. In general, plant mtDNA is resistant to pesticide exposure in vivo, probably due to the presence of non-coupled respiratory systems in plant mitochondria.
Collapse
Affiliation(s)
- Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Vadim V. Sitnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Daniil I. Pogorelov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Olga N. Boyko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Inna Y. Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
8
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Wu H, Chen J, Yang Y, Yu W, Chen Y, Lin P, Liang K. Smartphone-coupled three-layered paper-based microfluidic chips demonstrating stereoscopic capillary-driven fluid transport towards colorimetric detection of pesticides. Anal Bioanal Chem 2022; 414:1759-1772. [DOI: 10.1007/s00216-021-03839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
11
|
Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116371] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Zhang H, Xia C, Feng G, Fang J. Hospitals and Laboratories on Paper-Based Sensors: A Mini Review. SENSORS 2021; 21:s21185998. [PMID: 34577205 PMCID: PMC8472957 DOI: 10.3390/s21185998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
With characters of low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment, paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with nonexpert operation. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in medical detection, environmental inspection, and other applications. Herein, we summarize and generalize the recently reported paper-based sensors based on their application for mechanics, biomolecules, food safety, and environmental inspection. Based on the biological, physical, and chemical analytes-sensitive electrical or optical signals, extensive detections of a large number of factors such as humidity, pressure, nucleic acid, protein, sugar, biomarkers, metal ions, and organic/inorganic chemical substances have been reported via paper-based sensors. Challenges faced by the current paper-based sensors from the fundamental problems and practical applications are subsequently analyzed; thus, the future directions of paper-based sensors are specified for their rapid handheld testing.
Collapse
|
13
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
14
|
Torrinha Á, Morais S. Electrochemical (bio)sensors based on carbon cloth and carbon paper: An overview. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Torrinha Á, Martins M, Tavares M, Delerue-Matos C, Morais S. Carbon paper as a promising sensing material: Characterization and electroanalysis of ketoprofen in wastewater and fish. Talanta 2021; 226:122111. [DOI: 10.1016/j.talanta.2021.122111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
|
16
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Rahimi R, Ochoa M, Ziaie B. Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36332-36341. [PMID: 30222316 DOI: 10.1021/acsami.8b09598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we present a systematic study of laser processing of metallized papers (MPs) as a simple and scalable alternative to conventional photolithography-based processes and printing technologies. Two laser-processing methods are examined in terms of selectivity for the removal of the conductive aluminum film (25 nm) of an MP substrate; these processes, namely direct and indirect laser ablation (DLA and ILA), operate at wavelengths of 1.06 μm (neodymium-doped yttrium aluminum garnet) and 10.6 μm (CO2), respectively. The required threshold energy for each laser processing method was systematically measured using electrical, optical, and mechanical characterization techniques. The results of these investigations show that the removal of the metal coating using ILA is only achieved through partial etching of the paper substrate. The ILA process shows a narrow effective set of laser settings capable of removing the metal film while not completely burning through the paper substrate. By contrast, DLA shows a more defined and selective removal of the aluminum layer without damaging the mechanical and natural fibular structure of the paper substrate. Finally, as a proof of concept, interdigitated capacitive moisture sensors were fabricated by means of DLA and ILA onto the MP substrate, and their performance was assessed in the humidity range of 2-85%. The humidity sensitivity results show that the DLA sensors have a superior humidity sensing performance compared to the ILA sensors. The observed behavior is attributed to the higher water molecule absorption and induced capillary condensation within the intact cellulose network resulting from the DLA process (compared to the damaged one from the ILA process). The DLA process of MP should enable scalable production of low-cost, paper-based physical and chemical sensing systems for potential use in point-of-care diagnostics and food packaging.
Collapse
|
18
|
Ashwin BCMA, Saravanan C, Stalin T, Muthu Mareeswaran P, Rajagopal S. FRET-based Solid-state Luminescent Glyphosate Sensor Using Calixarene-grafted Ruthenium(II)bipyridine Doped Silica Nanoparticles. Chemphyschem 2018; 19:2768-2775. [PMID: 29989285 DOI: 10.1002/cphc.201800447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Calixarene-functionalized luminescent nanoparticles were successfully fabricated for the FRET-based selective and sensitive detection of the organophosphorus pesticide glyphosate (GP). p-Tert-butylcalix[4]arene was grafted on the surface of [Ru(bpy)3 ]2+ incorporated SiNps to produce self-assembled nanosensors (RSC). FRET was switched on in the presence of GP by means of energy transfer due to binding with p-tert-butylcalix[4]arene grafted on the surface of the RSC. The FRET efficiency of the GP-RSC system was increased gradually with the addition of GP. The FRET efficiency was evaluated as 87.69 % and a high binding affinity was established by the binding constant value, 1.16×107 M-1 , using a Langmuir binding isotherm plot. The estimated limit of detection (LOD) was 7.91×10-7 M, which was lower than the Environmental Protection Agency (EPA) recommendation. The probe also effectively responds to real sample analysis. The sensitivity and selectivity was realized due to the efficient FRET towards the fluorescence properties of the [Ru(bpy)3 ]2+ complex.
Collapse
Affiliation(s)
| | - Chokalingam Saravanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India
| | | | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India
| |
Collapse
|
19
|
Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2018. [DOI: 10.1002/celc.201800677] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Waldemir J. Paschoalino
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Sergio Kogikoski
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - José T. C. Barragan
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Juliana F. Giarola
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Lory Cantelli
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Thais M. Rabelo
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Tatiana M. Pessanha
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| |
Collapse
|
20
|
Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. LAB ON A CHIP 2018; 18:1812-1830. [PMID: 29855637 DOI: 10.1039/c8lc00025e] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.
Collapse
|
21
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
22
|
Abnous K, Danesh NM, Ramezani M, Alibolandi M, Emrani AS, Lavaee P, Taghdisi SM. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Mikrochim Acta 2018; 185:216. [DOI: 10.1007/s00604-018-2752-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
|
23
|
Non-Enzymatic Electrochemical Sensing of Malathion Pesticide in Tomato and Apple Samples Based on Gold Nanoparticles-Chitosan-Ionic Liquid Hybrid Nanocomposite. SENSORS 2018; 18:s18030773. [PMID: 29510525 PMCID: PMC5876763 DOI: 10.3390/s18030773] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022]
Abstract
Malathion (MLT) is an organophosphorous type pesticide and having seriously high toxicity and electrochemical platforms for rapid, simple, inexpensive and sensitive determination of pesticides is still a special concern. This paper describes a simple preparation of a composite film consisting of ionic liquid (IL), chitosan (CS) and electrochemically synthesized gold nanoparticles (AuNPs) on single use pencil graphite electrodes (PGEs). The microscopic and electrochemical characterization of AuNP-CS-IL/PGE was studied using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. This fabricated surface was then explored for the first time as a sensing matrix for the non-enzymatic electrochemical sensing of malathion by cyclic voltammetry and square wave voltammetry measurements. The proposed AuNP-CS-IL/PGE showed excellent characteristics and possessed remarkable affinity for malathion. The voltammetric current response exhibited two linear dynamic ranges, 0.89–5.94 nM and 5.94–44.6 nM reflecting two binding sites, with a detection limit of 0.68 nM. The method was applied in real sample analysis of apple and tomato. The results demonstrate the feasibility of AuNP-CS-IL-modified electrodes for simple, fast, ultrasensitive and inexpensive detection of MLT.
Collapse
|
24
|
Abstract
Self-powered electrochemical biosensors utilize biofuel cells as a simultaneous power source and biosensor, which simplifies the biosensor system, because it no longer requires a potentiostat, power for the potentiostat, and/or power for the signaling device. This review article is focused on detailing the advances in the field of self-powered biosensors and discussing their advantages and limitations compared to other types of electrochemical biosensors. The review will discuss self-powered biosensors formed from enzymatic biofuel cells, organelle-based biofuel cells, and microbial fuel cells. It also discusses the different mechanisms of sensing, including utilizing the analyte being the substrate/fuel for the biocatalyst, the analyte binding the biocatalyst to the electrode surface, the analyte being an inhibitor of the biocatalyst, the analyte resulting in the blocking of the bioelectrocatalytic response, the analyte reactivating the biocatalyst, Boolean logic gates, and combining affinity-based biorecognition elements with bioelectrocatalytic power generation. The final section of this review details areas of future investigation that are needed in the field, as well as problems that still need to be addressed by the field.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
25
|
Ensafi AA, Rezaloo F, Rezaei B. Electrochemical Determination of Fenitrothion Organophosphorus Pesticide Using Polyzincon Modified-glassy Carbon Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ali Aasghar Ensafi
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Fatemeh Rezaloo
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Behzad Rezaei
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
26
|
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO 2 conversion. Sci Rep 2017; 7:9107. [PMID: 28831188 PMCID: PMC5567247 DOI: 10.1038/s41598-017-09841-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO2.
Collapse
|