1
|
Taiwo BJ, Miller AH, Fielding AJ, Sarker SD, van Heerden FR, Fatokun AA. Ceibinin, a new positional isomer of mangiferin from the inflorescence of Ceiba pentandra (Bombacaceae), elicits similar antioxidant effect but no anti-inflammatory potential compared to mangiferin. Heliyon 2024; 10:e23335. [PMID: 38332887 PMCID: PMC10851220 DOI: 10.1016/j.heliyon.2023.e23335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/10/2024] Open
Abstract
Ceiba pentandra (L.) Gaertn. (Bombacaceae) is popular for the quality of its wood. However, its leaf, stem bark and root bark have been popular in ethnomedicine and, apart from the inflorescence, have been subject of extensive phytochemical investigations. In this study, two compounds were isolated from the crude methanol extract of the inflorescence. Through data from UV, NMR, MS, electrochemical studies, differential scanning calorimetry, and thermogravimetric analysis, the structures were elucidated as 3-C-β-d-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (1) and 2-C-β-d-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (mangiferin, 2). They were assessed for antioxidant efficacy (DCFDA assay) and for anti-inflammatory efficacy using the lipopolysaccharide (LPS)-induced inflammation model in the RAW 264.7 macrophages (nitrite levels quantified, using Griess Assay, as surrogate for nitric oxide (NO)). Compound 1 (named ceibinin) was established as a novel positional isomer of mangiferin (2). While both 1 and 2 were antioxidant against basal and hydrogen peroxide (100 μM)-induced oxidative stress (6.25 μg/ml abrogated peroxide-induced oxidative stress), ceibinin (1) demonstrated no anti-inflammatory potential, unlike mangiferin (2) which, as previously reported, showed anti-inflammatory effect. Our work reports a positional isomer of mangiferin for the first time in C. pentandra and demonstrates how such isomerism could underlie differences in biological activities and thus the potential for development into therapeutics.
Collapse
Affiliation(s)
- Bamigboye J. Taiwo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Alex H. Miller
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
- Current Address: Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Fannie R. van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Amos A. Fatokun
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
2
|
Liu J, Bai R, Zhang X. Fabrication of the Pesticide-Attapulgite Composites Regulated by Mixed-Surfactants. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Massah R, Zambou Jiokeng SL, Liang J, Njanja E, Ma Ntep TM, Spiess A, Rademacher L, Janiak C, Tonle IK. Sensitive Electrochemical Sensor Based On an Aminated MIL-101(Cr) MOF for the Detection of Tartrazine. ACS OMEGA 2022; 7:19420-19427. [PMID: 35721937 PMCID: PMC9202257 DOI: 10.1021/acsomega.2c01106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The aminated metal-organic framework H2N-MIL-101(Cr) was used as the carbon paste electrode (CPE) modifier for the determination of tartrazine (Tz) in soft drinks. The amino material was characterized by electrochemical impedance spectroscopy and showed significantly faster electron transfer with lower charge-transfer resistance (0.13 kΩ) compared to the electrode modified with the unfunctionalized MIL-101(Cr) material (1.1 kΩ). The H2N-MIL-101(Cr)-modified CPE [H2N-MIL-101(Cr)-CPE] was then characterized by cyclic voltammetry (CV) using [Fe(CN)6]3- and [Ru(NH3)6]3+ ions as the redox probes, showing good accumulation of [Fe(CN)6]3- ions on the electrode surface. A CV scan of Tz in Britton Robinson buffer solution revealed an irreversible system with an oxidation peak at +0.998 V versus Ag/AgCl/KCl. Using CV and differential pulse voltammetry, an electrochemical method for quantifying Tz in aqueous medium was then developed. Several parameters that affect the accumulation and detection steps were optimized. Optimal detection of Tz was achieved after 180 s of accumulation in Britton Robinson buffer solution (pH 2) using 2 mg of H2N-MIL-101(Cr) material. Under optimal conditions, the sensor exhibited a linear response in the concentration range of 0.004-0.1 μM and good detection sensitivity (35.4 μA μM-1), and the detection limit for Tz was found to be 1.77 nM (S/N = 3). Satisfactory repeatability, stability, and anti-interference performance were also achieved on H2N-MIL-101(Cr)-CPE. The sensor was applied to commercial juices, and the results obtained were approximately similar to those given by UV-vis spectrophotometry.
Collapse
Affiliation(s)
- Raïssa
Tagueu Massah
- Electrochemistry
and Chemistry of Materials, Department of Chemistry, University of Dschang, P.O. Box 67, 00237 Dschang, Cameroon
| | - Sherman Lesly Zambou Jiokeng
- Electrochemistry
and Chemistry of Materials, Department of Chemistry, University of Dschang, P.O. Box 67, 00237 Dschang, Cameroon
| | - Jun Liang
- Institut
für Anorganische Chemie, Heinrich-Heine-Universität
Düsseldorf, D-40204 Düsseldorf, Germany
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Blvd, Nanshan District, 518055 Shenzhen, China
| | - Evangeline Njanja
- Electrochemistry
and Chemistry of Materials, Department of Chemistry, University of Dschang, P.O. Box 67, 00237 Dschang, Cameroon
| | - Tobie Matemb Ma Ntep
- Institut
für Anorganische Chemie, Heinrich-Heine-Universität
Düsseldorf, D-40204 Düsseldorf, Germany
| | - Alex Spiess
- Institut
für Anorganische Chemie, Heinrich-Heine-Universität
Düsseldorf, D-40204 Düsseldorf, Germany
| | - Lars Rademacher
- Institut
für Anorganische Chemie, Heinrich-Heine-Universität
Düsseldorf, D-40204 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie, Heinrich-Heine-Universität
Düsseldorf, D-40204 Düsseldorf, Germany
| | - Ignas Kenfack Tonle
- Electrochemistry
and Chemistry of Materials, Department of Chemistry, University of Dschang, P.O. Box 67, 00237 Dschang, Cameroon
| |
Collapse
|
4
|
NGAHA MC, TCHIEDA V, KAMDEM A, DOUNGMO G, Njanja E, TONLE I. Aminoalcohol‐Functionalization of Alkali Palm Oil Fiber and Application as Electrochemical Sensor for 2‐Nitrophenol Determination. ELECTROANAL 2022. [DOI: 10.1002/elan.202200086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Rahimipour M, Bagheri Gh. A, Fatemi SJ. A Bird Nest-like Nanostructured NiCO2O4 Modified Screen Printed Electrode for the Sensitive Determination of Mangiferin. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Dongmo LM, Guenang LS, Jiokeng SLZ, Kamdem AT, Doungmo G, Victor BC, Jović M, Lesch A, Tonlé IK, Girault H. A new sensor based on an amino-montmorillonite-modified inkjet-printed graphene electrode for the voltammetric determination of gentisic acid. Mikrochim Acta 2021; 188:36. [PMID: 33420843 DOI: 10.1007/s00604-020-04651-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 μM (R2 = 0.999), and a low detection limit of 0.33 μM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.
Collapse
Affiliation(s)
- Liliane M Dongmo
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
| | - Léopoldine S Guenang
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
- Department of chemistry, Inorganic Chemistry Laboratory, University of Buea, Buea, Cameroon
| | - Sherman L Z Jiokeng
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS - Université de Lorraine, 405, rue de Vandœuvre, 54600, Villers-lès-Nancy, France
| | - Arnaud T Kamdem
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110, Freiburg, Germany
| | - Giscard Doungmo
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straβe 2, 24118, Kiel, Germany
| | - Bassetto C Victor
- Laboratoire d'Electrochimie Physique et Analytique, EPFL, Rue de l'Industrie, CH-1951, Sion, Switzerland
| | - Milica Jović
- Laboratoire d'Electrochimie Physique et Analytique, EPFL, Rue de l'Industrie, CH-1951, Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Ignas K Tonlé
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon.
| | - Hubert Girault
- Laboratoire d'Electrochimie Physique et Analytique, EPFL, Rue de l'Industrie, CH-1951, Sion, Switzerland
| |
Collapse
|
7
|
Fabrication of a novel amperometric sensing platform for determination of mangiferin. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Montmorillonite clay-modified disposable ink-jet-printed graphene electrode as a sensitive voltammetric sensor for the determination of cadmium(II) and lead(II). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2283-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Liu D, Zheng H. Triazole functional groups modified attapulgite with petal-like morphology for efficient removal of strontium contaminant from aqueous solution. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Organoclay-film modified electrode for the detection of ultra-traces of Hg2+ ions: Approach of one factor at a time by an experimental design. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Efficient removal of Sr(II) from aqueous solution by melamine-trimesic acid modified attapulgite composite. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06570-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Zhang L, Zhang G, Dai Z, Bian P, Zhong N, Zhang Y, Cai D, Wu Z. Promoting Potato Seed Sprouting Using an Amphiphilic Nanocomposite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9657-9666. [PMID: 30157371 DOI: 10.1021/acs.jafc.8b03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most potato tubers were used as seeds and sprouted relatively slowly in soil, greatly influencing potato production. To solve this problem, an amphiphilic nanocomposite was fabricated by loading hydrophobic silica (H-SiO2) in hydrophilic attapulgite nest-like and used as a nano presprouting agent (NPA). This technology could conveniently adjust the occupation area ratio of water and air (OARWA) on the potato surface. NPA could endow potatoes with an appropriate OARWA and, thus, effectively accelerate sprouting. Additionally, NPA greatly decreased soil bulk density, facilitated earthworm growth, promoted potato growth, and increased the yield by 14.1%. Besides, NPA did not pass through the potato skin and mainly existed on the surface of potatoes. Importantly, NPA showed tiny influence on the viability of fish and nematodes, demonstrating good biosafety. Therefore, this work provides a promising presprouting approach for potatoes, which may have a potential application prospect in ensuring food supply.
Collapse
Affiliation(s)
- Lihong Zhang
- University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | | | - Zhangyu Dai
- University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | | | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , 1 Beichen West Road , Beijing 100101 , People's Republic of China
| | - Yuanyuan Zhang
- School of Life Science , Anhui Medical University , 81 Meishan Road , Hefei , Anhui 230032 , People's Republic of China
| | | | | |
Collapse
|
13
|
Teixeira JG, Veiga A, Dias CB, Teixeira DM. Electroanalytical Study of Macluraxanthone: A Natural Product with a Strong Antioxidant and Antimalarial Activity. ELECTROANAL 2017. [DOI: 10.1002/elan.201700181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jorge Ginja Teixeira
- Chemistry Department of Science and Technology School; Évora University, CLAV Rua Romão Ramalho n.○ 59; 7000-671 Évora Portugal
- HERCULES Laboratory; Évora University, Palácio do Vimioso Largo Marquês de Marialva; 8 7000-809 Évora Portugal
| | - Alfredina Veiga
- HERCULES Laboratory; Évora University, Palácio do Vimioso Largo Marquês de Marialva; 8 7000-809 Évora Portugal
| | - Cristina Barrocas Dias
- Chemistry Department of Science and Technology School; Évora University, CLAV Rua Romão Ramalho n.○ 59; 7000-671 Évora Portugal
- HERCULES Laboratory; Évora University, Palácio do Vimioso Largo Marquês de Marialva; 8 7000-809 Évora Portugal
| | - Dora Martins Teixeira
- Chemistry Department of Science and Technology School; Évora University, CLAV Rua Romão Ramalho n.○ 59; 7000-671 Évora Portugal
- HERCULES Laboratory; Évora University, Palácio do Vimioso Largo Marquês de Marialva; 8 7000-809 Évora Portugal
| |
Collapse
|