1
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
2
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor based on PEDOT/CNTs-graphene oxide for simultaneous determination of hazardous hydroquinone, catechol, and nitrite in real water samples. Sci Rep 2024; 14:5654. [PMID: 38454022 PMCID: PMC10920748 DOI: 10.1038/s41598-024-54683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Hydroquinone (HQ), catechol (CC) and nitrite (NT) are considered aquatic environmental pollutants. They are highly toxic, harm humans' health, and damage the environment. Thus, in the present work we introduce a simple and efficient electrochemical sensor for determination of HQ, CC, and NT simultaneously in wastewater sample. The sensor is fabricated by modifying the surface of a glassy carbon electrode (GCE) by two successive thin films from poly(3,4-ethylenedioxythiophene) (PEDOT) and a mixture of carbon nanotubes-graphene oxide (CNT-GRO). Under optimized conditions the HQ, CC, and NT are successfully detected simultaneously in wastewater sample with changing their concentrations in the ranges (0.04 → 100 µM), (0.01 → 100 µM) and (0.05 → 120 µM), the detection limits are 8.5 nM, 3.8 nM and 6.1 nM, respectively. Good potential peak separations: 117 mV and 585 mV are obtained between the HQ-CC, and CC-NT. The sensor has an excellent catalytic capability toward the oxidation of HQ, CC, and NT due to good synergism between its composite components: PEDOT, GRO and CNTs. The features of the sensor are large active surface area, good electrical conductivity, perfect storage stability, good reproducibility, anti-interference capability and accepted recovery rate for HQ, CC, and NT determination in wastewater sample.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
d'Astous ÉV, Dauphin-Ducharme P. DNA Chimeras as Electrochemical Biosensors for Host-Guest Measurements in Blood. Chemistry 2023; 29:e202302780. [PMID: 37738609 DOI: 10.1002/chem.202302780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Few sensing platforms have become ubiquitous to enable rapid and convenient measurements at the point-of-care. Those, however, are "one-off" technologies, meaning that they can only detect a single target and are hardly adaptable. In response, we plan to develop a sensing platform that can be extended to detect other classes of molecules and that affords rapid, convenient, continuous measurements directly in undiluted complex matrices. For this, we decided to rely on a host molecule that presents reversible interactions toward specific guest molecules to develop a new class of sensors that we coined "Electrochemical DNA-host chimeras". As a proof-of-concept for our sensor, we decided to use cyclobis(paraquat-p-phenylene) ("blue box") that we attached on an electrode-bound DNA to allow measurements of electron-rich guests such as dopamine and aspirin. Doing so allows to promote host-guest complex that could be quantified using blue box's electrochemistry. Because of this unique sensor architecture, we achieve, to our knowledge, the first reagentless, continuous and rapid (<5 min) host-guest measurements in undiluted whole blood. We envision that given the library of electroactive host molecules that this will allow the development of a sensing platform for measurements of several classes of molecules in complex matrices at the point-of-care.
Collapse
Affiliation(s)
- Élodie V d'Astous
- Département de chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | | |
Collapse
|
4
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of antiviral favipiravir drug, paracetamol and vitamin C based on host-guest inclusion complex of β-CD/CNTs nanocomposite. Sci Rep 2023; 13:19910. [PMID: 37963918 PMCID: PMC10645768 DOI: 10.1038/s41598-023-45353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Favipiravir (FVI) is extensively used as an effective medication against several diverse infectious RNA viruses. It is widely administered as an anti-influenza drug. Combination therapy formed from FVI, paracetamol (PAR) and vitamin C (VC) is needed for treating patients diseased by RNA viruses. Thus, an efficient electrochemical sensor is developed for detecting FVI in human serum samples. The sensor is fabricated by casting a thin layer of carbon nanotubes (CNTs) over a glassy carbon (GC) electrode surface followed by electrodeposition of another layer of β-cyclodextrin (β-CD). Under optimized conditions, the sensor shows excellent catalytic effect for FVI, PAR and VC oxidation in the concentration ranges (0.08 µM → 80 µM), (0.08 µM → 50 µM) and (0.8 µM → 80 µM) with low detection limits of 0.011 μM, 0.042 μM and 0.21 μM, respectively. The combined effect of host-guest interaction ability of β-CD for the drugs, and a large conductive surface area of CNTs improves the sensing performance of the electrode. The sensor exhibits stable response over 4 weeks, good reproducibility, and insignificant interference from common species present in serum samples. The reliability of using the sensor in serum samples shows good recovery of FVI, PAR and VC.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. CHEMOSPHERE 2022; 302:134815. [PMID: 35526688 DOI: 10.1016/j.chemosphere.2022.134815] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CQDs), the intensifying nanostructured form of carbon material, have exhibited incredible impetus in several research fields such as bio-imaging, bio-sensing, drug delivery systems, optoelectronics, photovoltaics, and photocatalysis, thanks to their exceptional properties. The CQDs show extensive photonic and electronic properties, as well as their light-collecting, tunable photoluminescence, remarkable up-converted photoluminescence, and photo-induced transfer of electrons were widely studied. These properties have great advantages in a variety of visible-light-induced catalytic applications for the purpose of fully utilizing the energy from the solar spectrum. The major purpose of this review is to validate current improvements in the fabrication of CQDs, characteristics, and visible-light-induced catalytic applications, with a focus on CQDs multiple functions in photo-redox processes. We also examine the problems and future directions of CQD-based nanostructured materials in this growing research field, with an eye toward establishing a decisive role for CQDs in photocatalysis, bio-imaging, and bio-sensing applications that are enormously effective and stable over time. In the end, a look forward to future developments is presented, with a view to overcoming challenges and encouraging further research into this promising field.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Saudi Arabia.
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
6
|
Song L, Tian F, Liu Z. Lanthanide doped metal-organic frameworks as a ratiometric fluorescence biosensor for visual and ultrasensitive detection of serotonin. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hosseini M, Hashemian E, Salehnia F, Ganjali MR. Turn-on electrochemiluminescence sensing of melatonin based on graphitic carbon nitride nanosheets. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Heterocyclic Crown Ethers with Potential Biological and Pharmacological Properties: From Synthesis to Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyclic organic compounds with several ether linkages in their structure are of much concern in our daily life applications. Crown ethers (CEs) are generally heterocyclic and extremely versatile compounds exhibiting higher binding affinity. In recent years, due to their unique structure, crown ethers are widely used in drug delivery, solvent extraction, cosmetics manufacturing, material studies, catalysis, separation, and organic synthesis. Beyond their conventional place in chemistry, this review article summarizes the synthesis, biological, and potential pharmacological activities of CEs. We have emphasized the prospects of CEs as anticancer, anti-inflammatory, antibacterial, and antifungal agents and have explored their amyloid genesis inhibitory activity, electrochemical, and potential metric sensing properties. The central feature of these compounds is their ability to form selective and stable complexes with various organic and inorganic cations. Therefore, CEs can be used in gas chromatography as the stationary phase and are also valuable for cation chromatographic to determine and separate alkali and alkaline-earth cations.
Collapse
|
9
|
Nataraj N, Chen TW, Chen SM, Tseng TW, Bian Y, Sun TT, Jiang J. Metal-organic framework (ZIF-67) interwoven multiwalled carbon nanotubes as a sensing platform for rapid administration of serotonin. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Xu J, Tao J, Su L, Wang J, Jiao T. A Critical Review of Carbon Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for the Determination of a Depression-Related Neurotransmitter. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3987. [PMID: 34300909 PMCID: PMC8307216 DOI: 10.3390/ma14143987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Depression has become the leading cause of disability worldwide and is a global health burden. Quantitative assessment of depression-related neurotransmitter concentrations in human fluids is highly desirable for diagnosis, monitoring disease, and therapeutic interventions of depression. In this review, we focused on the latest strategies of CD-based electrochemical biosensors for detecting a depression-related neurotransmitter. We began this review with an overview of the microstructure, optical properties and cytotoxicity of CDs. Next, we introduced the development of synthetic methods of CDs, including the "Top-down" route and "Bottom-up" route. Finally, we highlighted detecting an application of CD-based electrochemical sensors in a depression-related neurotransmitter. Moreover, challenges and future perspectives on the recent progress of CD-based electrochemical sensors in depression-related neurotransmitter detection were discussed.
Collapse
Affiliation(s)
- Jingying Xu
- Mental Health Service Center and College of Marxism, Yanshan University, Qinhuangdao 066004, China; (J.X.); (J.T.)
| | - Jiangang Tao
- Mental Health Service Center and College of Marxism, Yanshan University, Qinhuangdao 066004, China; (J.X.); (J.T.)
| | - Lili Su
- Li Ren College, Yanshan University, Qinhuangdao 066004, China;
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
11
|
An innovative design of hydrazine hydrate electrochemical sensor based on decoration of crown ether/Nafion/carbon nanotubes composite with gold nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Atta NF, Galal A, Ahmed YM, Abdelkader MG. Development of an Innovative Nitrite Sensing Platform Based on the Construction of an Electrochemical Composite Sensor of Polymer Coated CNTs and Decorated with Magnetite Nanoparticles. ELECTROANAL 2021. [DOI: 10.1002/elan.202060598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nada F. Atta
- Chemistry Department, Faculty of Science Cairo University 12613 Giza Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science Cairo University 12613 Giza Egypt
| | - Yousef M. Ahmed
- Chemistry Department, Faculty of Science Cairo University 12613 Giza Egypt
| | | |
Collapse
|
13
|
Khoshnevisan K, Baharifar H, Torabi F, Sadeghi Afjeh M, Maleki H, Honarvarfard E, Mohammadi H, Sajjadi-Jazi SM, Mahmoudi-Kohan S, Faridbod F, Larijani B, Saadat F, Faridi Majidi R, Khorramizadeh MR. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem 2021; 413:1615-1627. [PMID: 33501550 DOI: 10.1007/s00216-020-03122-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) levels have been associated with several exclusively metabolic disorders. Herein, a new approach for 5-HT level as a novel biomarker of diabetes mellitus is considered using a simple nanocomposite and HPLC method. Reduced graphene oxide (rGO) comprising gold nanoparticles (AuNPs) was decorated with 18-crown-6 (18.Cr.6) to fabricate a simple nanocomposite (rGO-AuNPs-18.Cr.6). The nanocomposite was positioned on a glassy carbon electrode (GCE) to form an electrochemical sensor for the biomarker 5-HT in the presence of L-tryptophan (L-Trp), dopamine (DA), ascorbic acid (AA), urea, and glucose. The nanocomposite exhibited efficient catalytic activity for 5-HT detection by square-wave voltammetry (SWV). The proposed sensor displayed high selectivity, excellent reproducibility, notable anti-interference ability, and long-term stability even after 2 months. SWV defined a linear range of 5-HT concentration from 0.4 to 10 μg L-1. A diabetic animal model (diabetic zebrafish model) was then applied to investigate 5-HT as a novel biomarker of diabetes. A limit of detection (LOD) of about 0.33 μg L-1 was found for the diabetic group and 0.15 μg L-1 for the control group. The average levels of 5-HT obtained were 9 and 2 μg L-1 for control and diabetic groups, respectively. The recovery, relative standard deviation (RSD), and relative error (RE) were found to be about 97%, less than 2%, and around 3%, respectively. The significant reduction in 5-HT level in the diabetic group compared to the control group proved that the biomarker 5-HT can be applied for the early diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Farzad Torabi
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mahsa Sadeghi Afjeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hassan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sadegh Mahmoudi-Kohan
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Farnoush Faridbod
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Farshid Saadat
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, 41887-94755, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
14
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|
15
|
Atta NF, Abdel Gawad SA, Galal A, Razik AA, El-Gohary AR. Efficient electrochemical sensor for determination of H2O2 in human serum based on nano iron‑nickel alloy/carbon nanotubes/ionic liquid crystal composite. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Zhao YY, Li H, Ge QM, Cong H, Liu M, Tao Z, Zhao JL. A chemo-sensor constructed by nanohybrid of multifarene[3,3] and rGO for serotonin hydrochloride with dual response in both fluorescence and voltammetry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Atta NF, Galal A, El-Gohary ARM. New insight for simultaneous determination of hazardous di-hydroxybenzene isomers at crown ether modified polymer/carbon nanotubes composite sensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122038. [PMID: 31968302 DOI: 10.1016/j.jhazmat.2020.122038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
A new insight is presented in the fabrication of a reliable electrochemical sensor for di-hydroxybenzene isomers; hydroquinone (HQ), catechol (CC), and resorcinol (RC) which have been considered as common pollutants in environment and water samples. The sensor is based on modifying the glassy carbon electrode (GC) with successive layers, multi-walled carbon nanotubes (CNT), poly-hydroquinone (PHQ) and benzo-12-crown-4 (CE); GC/CNT/PHQ/CE. CE is introduced for the first time as a receptor for the di-hydroxybenzene isomers based on host-guest size matching. Other cycling compound with different cavity diameter as β-cyclodextrin (β-CD) (6.0-6.5 Å) was examined displaying lower current responses. CE exhibited "fit" cavity size (1.20-1.50 Å). Thus, the inclusion complexes formed between β-CD and di-hydroxybenzene isomers are less stable. The layered sensor showed highly electro-catalytic activity for simultaneous determination of isomers; HQ, CC and RC in the concentration ranges of 0.03-100 μM, 0.01-100 μM and 0.05-100 μM with low detection limit values of 0.156 nM, 0.118 nM and 0.427 nM, respectively. The practical impact of the sensor was illustrated for determination of di-hydroxybenzene isomers in real water matrices from two different sources. Moreover, anti-interference ability of the layered sensor for determination of di-hydroxybenzene isomers was successfully achieved in presence of common interfering ions and organic pollutants.
Collapse
Affiliation(s)
- Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Asmaa R M El-Gohary
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
18
|
Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Anal Bioanal Chem 2020; 412:3615-3627. [DOI: 10.1007/s00216-020-02598-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
19
|
Atta NF, Galal A, El-Gohary AR. Crown ether modified poly(hydroquinone)/carbon nanotubes based electrochemical sensor for simultaneous determination of levodopa, uric acid, tyrosine and ascorbic acid in biological fluids. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le QV, Jang HW, Shokouhimehr M. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv 2020; 10:15406-15429. [PMID: 35495425 PMCID: PMC9052380 DOI: 10.1039/d0ra00799d] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022] Open
Abstract
Neuro-transmitters have been considered to be essential biochemical molecules, which monitor physiological and behavioral function in the peripheral and central nervous systems. Thus, it is of high pharmaceutical and biological significance to analyze neuro-transmitters in the biological samples. So far, researchers have devised a lot of techniques for assaying these samples. It has been found that electro-chemical sensors possess features of robustness, selectivity, and sensitivity as well as real-time measurement. Graphene quantum dots (GQDs) and carbon QDs (CQDs) are considered some of the most promising carbon-based nanomaterials at the forefront of this research area. This is due to their characteristics including lower toxicity, higher solubility in various solvents, great electronic features, strong chemical inertness, high specific surface areas, plenty of edge sites for functionalization, and versatility, in addition to their ability to be modified via absorbent surface chemicals and the addition of modifiers or nano-materials. Hence in the present review, the synthesis methods of GQDs and CQDs has been summarized and their characterization methods also been analyzed. The applications of carbon-based QDs (GQDs and CQDs) in biological and sensing areas, such as biological imaging, drug/gene delivery, antibacterial and antioxidant activity, photoluminescence sensors, electrochemiluminescence sensors and electrochemical sensors, have also been discussed. This study then covers sensing features of key neurotransmitters, including dopamine, tyrosine, epinephrine, norepinephrine, serotonin and acetylcholine. Hence, issues and challenges of the GQDs and CQDs were analyzed for their further development. Carbon and graphene quantum dots for biological and sensing applications of neurotransmitters.![]()
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Zahra Dourandish
- Environment Department
- Institute of Science and High Technology and Environmental Sciences
- Graduate University of Advanced Technology
- Kerman
- Iran
| | - Kaiqiang Zhang
- Department of Materials Science and Engineering
- Research Institute of Advanced Materials
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Hadi Beitollahi
- Environment Department
- Institute of Science and High Technology and Environmental Sciences
- Graduate University of Advanced Technology
- Kerman
- Iran
| | - Quyet Van Le
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
| | - Ho Won Jang
- Department of Materials Science and Engineering
- Research Institute of Advanced Materials
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering
- Research Institute of Advanced Materials
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
21
|
Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|