1
|
Slimane Ben Ali D, Krid F, Nacef M, Boussaha EH, Chelaghmia ML, Tabet H, Selaimia R, Atamnia A, Affoune AM. Green synthesis of copper oxide nanoparticles using Ficus elastica extract for the electrochemical simultaneous detection of Cd 2+, Pb 2+, and Hg 2. RSC Adv 2023; 13:18734-18747. [PMID: 37346942 PMCID: PMC10281342 DOI: 10.1039/d3ra02974c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
In this paper, for the first time, we report the use of a new carbon paste electrode based on a low-cost pencil graphite powder modified with polyaniline (PANI) and green synthesized copper oxide nanoparticles using Ficus elastica extract as a sensor for Cd2+, Pb2+, and Hg2+. The elaborated electrode was characterized by FT-IR spectroscopy, field-emission gun scanning electron microscopy (FEG-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and simultaneous thermal analysis (TGA/DSC). The electrochemical behavior of the sensor was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy techniques. According to CV, as well as square wave voltammetry (SWV) results, it was found that the CuONPs/PANI-CPE sensor was able to determine very low concentrations of Cd2+, Pb2+, and Hg2+ in HCl (0.01 M) either in single metal or in multi-metal solutions with a high sensitivity. Furthermore, Cd2+, Pb2+, and Hg2+ simultaneous detection on CuONPs/PANI-CPE achieved very low limits of detection (0.11, 0.16, and 0.07 μg L-1, respectively). Besides, the designed sensor displayed a good selectivity, reproducibility, and stability. Moreover, CuONPs/PANI-CPE enabled us to determine with high accuracy Cd2+, Pb2+, and Hg2+ traces in environmental matrices.
Collapse
Affiliation(s)
- Djihane Slimane Ben Ali
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955 Skikda 21000 Algeria
| | - Ferial Krid
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- Chemical and Environmental Engineering Research Laboratory, LGCE Algeria
| | - Mouna Nacef
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - El Hadi Boussaha
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
| | - Mohamed Lyamine Chelaghmia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - Habiba Tabet
- Chemical and Environmental Engineering Research Laboratory, LGCE Algeria
| | - Radia Selaimia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - Amira Atamnia
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955 Skikda 21000 Algeria
| | - Abed Mohamed Affoune
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| |
Collapse
|
2
|
Oliveira AEF, Pereira AC, Ferreira LF. Disposable electropolymerized molecularly imprinted electrochemical sensor for determination of breast cancer biomarker CA 15-3 in human serum samples. Talanta 2023; 252:123819. [DOI: 10.1016/j.talanta.2022.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
3
|
A novel and ultrasensitive non-enzymatic electrochemical glucose sensor in real human blood samples based on facile one-step electrochemical synthesis of nickel hydroxides nanoparticles onto a three-dimensional Inconel 625 foam. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Drissi W, Chelaghmia ML, NACEF MOUNA, Affoune A, Satha H, Kihal R, Fisli H, Boukharouba C, Pontié M. In situ growth of Ni(OH)<sub>2 </sub>nanoparticles on 316L stainless steel foam: An efficient three‐dimensional non‐enzymatic glucose electrochemical sensor in real human blood serum samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - MOUNA NACEF
- Laboratoire danalyses industrielles et genie des materiaux ALGERIA
| | | | | | | | | | - Chahira Boukharouba
- Université 8 Mai 1945 Guelma Faculté des Sciences et de la Technologie ALGERIA
| | | |
Collapse
|
5
|
Dendritic Cu(OH)2 nanostructures decorated pencil graphite electrode as a highly sensitive and selective impedimetric non-enzymatic glucose sensor in real human serum blood samples. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-021-02883-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
A molecularly imprinted electrochemical biosensor based on hierarchical Ti 2Nb 10O 29 (TNO) for glucose detection. Mikrochim Acta 2021; 189:24. [PMID: 34894290 DOI: 10.1007/s00604-021-05128-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
A novel molecularly imprinted electrochemical biosensor for glucose detection is reported based on a hierarchical N-rich carbon conductive-coated TNO structure (TNO@NC). Firstly, TNO@NC was fabricated by a novel polypyrrole-chemical vapor deposition (PPy-CVD) method with minimal waste generation. Afterward, the electrode modification with TNO@NC was performed by dropping TNO@NC particles on glassy carbon electrode surfaces by infrared heat lamp. Finally, the glucose-imprinted electrochemical biosensor was developed in presence of 75.0 mM pyrrole and 25.0 mM glucose in a potential range from + 0.20 to + 1.20 V versus Ag/AgCl via cyclic voltammetry (CV). The physicochemical and electrochemical characterizations of the fabricated molecularly imprinted biosensor was conducted by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and CV techniques. The findings demonstrated that selective, sensitive, and stable electrochemical signals were proportional to different glucose concentrations, and the sensitivity of molecularly imprinted electrochemical biosensor for glucose detection was estimated to be 18.93 μA μM-1 cm-2 (R2 = 0.99) at + 0.30 V with the limit of detection (LOD) of 1.0 × 10-6 M. Hence, it can be speculated that the fabricated glucose-imprinted biosensor may be used in a multitude of areas, including public health and food quality.
Collapse
|
7
|
Goodnight L, Butler D, Xia T, Ebrahimi A. Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes. BIOSENSORS 2021; 11:409. [PMID: 34821625 PMCID: PMC8615574 DOI: 10.3390/bios11110409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/24/2023]
Abstract
Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 ± 0.45 μA cm-2/log10(mole.L-1) at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment.
Collapse
Affiliation(s)
- Lindsey Goodnight
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
| | - Derrick Butler
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tunan Xia
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
| | - Aida Ebrahimi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Li Y, Liu Y, Chen L, Xu J. A Conformable, Gas-Permeable, and Transparent Skin-Like Micromesh Architecture for Glucose Monitoring. Adv Healthc Mater 2021; 10:e2100046. [PMID: 34263551 DOI: 10.1002/adhm.202100046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/24/2021] [Indexed: 11/06/2022]
Abstract
Monitoring the concentration of useful biomarkers via electronic skins (e-skins) is highly important for the development of wearable health management systems. While some biosensor e-skins with high flexibility, sensitivity, and stability have been developed, little attention has been paid to their long-term comfortability and optical transparency. Here, a conformable, gas permeable, and transparent skin-like Cu2 O@Ni micromesh structural glucose monitoring patch is reported. With its self-supporting micromesh structure, the skin-like glucose monitoring patch exhibits excellent shape conformability, high gas permeability, and high optical transmittance. The skin-like glucose biosensor achieves real-time monitoring of glucose concentrations with high sensitivity (15 420 µA cm- 2 mM- 1 ), low detection limit (50 nM), fast response time (<2 s), high selectivity, and long-term stability. These desirable performance properties arise from the synergistic effects of the self-supporting micromesh configuration, high conductivity of the metallic Ni micromesh, and high electrocatalytic activities of the Cu2 O toward glucose. This work presents a versatile and efficient strategy for constructing conformable, gas permeable, and transparent biosensor e-skins with excellent practicability towards wearable electronics.
Collapse
Affiliation(s)
- Ya‐Lei Li
- School of Optoelectronic Science and Engineering Soochow University Suzhou Jiangsu 215006 P. R. China
| | - Yan‐Hua Liu
- School of Optoelectronic Science and Engineering Soochow University Suzhou Jiangsu 215006 P. R. China
| | - Lin‐Sen Chen
- School of Optoelectronic Science and Engineering Soochow University Suzhou Jiangsu 215006 P. R. China
| | - Jian‐Long Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
10
|
Chelaghmia ML, Fisli H, Nacef M, Brownson DAC, Affoune AM, Satha H, Banks CE. Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2812-2822. [PMID: 34059854 DOI: 10.1039/d1ay00056j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three dimensional (3D) non-enzymatic glucose disposable electrochemical sensor based on screen-printed graphite macroelectrodes (SPEs), modified with nickel hydroxide (Ni(OH)2/SPE), copper hydroxide (Cu(OH)2/SPE) and mixed (Ni(OH)2/Cu(OH)2/SPE) microstructures were prepared by a facile and cost-effective electrochemical method for the first time. Their morphologies and structures were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The electrochemical performances of the modified SPEs were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometric measurements. EIS experiments showed lower charge transfer resistance Rct values for the modified SPEs, calculated to be 29.24 kΩ, 22.58 kΩ, 13.27 kΩ and 36.48 kΩ for Ni(OH)2/SPE, Cu(OH)2/SPE, Ni(OH)2/Cu(OH)2/SPE, and SPE, respectively. Under optimal experimental conditions, the results reveal that CV, amperometry and EIS can be readily applied to determine glucose using all of the fabricated sensors, however in terms of an accessible and clinically relevant linear range for the electroanalytical detection of glucose, CV is preferred, where Cu(OH)2/SPE exhibits the largest linear range from 1 μM to 20 mM (R2 = 0.997). In terms of sensitivity and the detection limit however, amperometry appeared to be a better choice of technique, particularly with Ni(OH)2/Cu(OH)2/SPE which demonstrated the highest sensitivity of 2029 μA mM-1 cm-2 and the lowest detection limit of 0.2 μM (S/N = 3). Excellent selectivity was evident against common interfering species, and it was shown to be possible to obtain satisfactory results in human blood serum samples using the as-fabricated sensors. The low cost of the SPEs, the facile preparation and observed clinically relevant analytical sensitivities and limit of detections towards the sensing of glucose make these screen-printed macroelectrode based electrochemical sensing platforms promising for routine human blood serum glucose analysis.
Collapse
Affiliation(s)
- Mohamed L Chelaghmia
- Laboratory of Industrial Analysis and Materials Engineering, University May 8, 1945 Guelma, P. O. B. 401, Guelma 24000, Algeria.
| | | | | | | | | | | | | |
Collapse
|
11
|
2D metal azolate framework as nanozyme for amperometric detection of glucose at physiological pH and alkaline medium. Mikrochim Acta 2021; 188:77. [PMID: 33566156 DOI: 10.1007/s00604-021-04737-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
The synthesis of Co-based two-dimensional (2D) metal azolate framework nanosheets (MAF-5-CoII NS) is described using a simple hydrothermal method. The product was isostructural to MAF-5 (Zn). The as-prepared MAF-5-CoII NS exhibited high surface area (1155 m2/g), purity, and crystallinity. The MAF-5-CoII NS-modified screen-printed electrode (MAF-5-CoII NS/SPE) was used for nonenzymatic detection of glucose in diluted human blood plasma (BP) samples with phosphate buffer saline (PBS, pH 7.4) and NaOH (0.1 M, pH 13.0) solutions. The MAF-5-CoII NS nanozyme displayed good redox activity in both neutral and alkaline media with the formation of CoII/CoIII redox pair, which induced the catalytic oxidation of glucose. Under the optimized detection potential, the sensor presented a chronoamperometric current response for the oxidation of glucose with two wide concentration ranges in PBS-diluted (62.80 to 180 μM and 305 to 8055 μM) and NaOH-diluted (58.90 to 117.6 μM and 180 to 10,055 μM) BP samples, which were within the limit of blood glucose levels of diabetic patients before (4.4-7.2 mM) and after (10 mM) meals (recommended by the American Diabetes Association). The sensor has a limit of detection of ca. 0.25 and 0.05 μM, respectively, and maximum sensitivity of ca. 36.55 and 1361.65 mA/cm2/mM, respectively, in PBS- and NaOH-diluted BP samples. The sensor also displayed excellent stability in the neutral and alkaline media due to the existence of hydrophobic linkers (2-ethyl imidazole) in the MAF-5-CoII NS, good repeatability and reproducibility, and interference-free signals. Thus, MAF-5-CoII NS is a promising nanozyme for the development of the disposable type of sensor for glucose detection in human body fluids. Graphical abstract.
Collapse
|
12
|
Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105751] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Ayaz S, Karakaya S, Emir G, Dilgin DG, Dilgin Y. A novel enzyme-free FI-amperometric glucose biosensor at Cu nanoparticles modified graphite pencil electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing. Mikrochim Acta 2020; 187:196. [PMID: 32125544 DOI: 10.1007/s00604-020-4171-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Nanostructured nickel (Ni) and nickel oxide (NiO) electrodes were fabricated on Ni foils using the glancing angle deposition (GLAD) technique. Cyclic voltammetry and amperometry showed the electrodes enable non-enzymatic electrochemical determination of glucose in strongly alkaline media. Under optimized conditions of NaOH concentration and working potential (~ 0.50 V vs. Ag/AgCl), the GLAD electrodes performed far better than bare Ni foil electrodes, with the GLAD NiO electrode showing an outstanding sensitivity (4400 μA mM-1 cm-2), superior detection limit (7 nM), and wide dynamic range (0.5 μM-9 mM), with desirable selectivity and reproducibility. Based on their performance at a low concentration, the GLAD NiO electrodes were also used to quantify glucose in artificial urine and sweat samples which have significantly lower glucose levels than blood. The GLAD NiO electrodes showed negligible response to the common interferents in glucose measurement (uric acid, dopamine, serotonin, and ascorbic acid), and they were not poisoned by high amounts of sodium chloride. Graphical abstract The figures depict (A) SEM image of vertical post-GLAD NiO electrodes used for non-enzymatic electrochemical glucose monitoring, and (B) calibration plots of the three different electrodes.
Collapse
|
15
|
Liu B, Li Z. Electrochemical treating of a smooth Cu-Ni-Zn surface into layered micro-chips of rice grain-like Cu/Ni(OH)2 nanocomposites as a highly sensitive enzyme-free glucose sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|