1
|
Granja HS, Silva JDOS, Andrade YB, Farrapeira RO, Sussuchi EM, Freitas LS. Emerging carbonaceous material based on residual grape seed applied in selective and sensitive electrochemical detection of fenamiphos. Talanta 2025; 281:126784. [PMID: 39245008 DOI: 10.1016/j.talanta.2024.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.
Collapse
Affiliation(s)
- Honnara S Granja
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Jonatas de Oliveira S Silva
- Programa de Pós-Graduação Em Química, Instituto de Química, Universidade Federal da Bahia, R. Barão de Jeremoabo, S/n - Ondina, Salvador, BA, 40170-280, Brazil.
| | - Yasmine B Andrade
- Programa de Pós-Graduação Em Biotecnologia Industrial, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Rafael O Farrapeira
- NUESC - Núcleo de Estudos Em Sistemas Coloidais - ITP, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Eliana M Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
2
|
Akyilmaz I, Demir NY, Bas D, Duman M. Precision phenylalanine sensing in blood with nanomaterial-enhanced electrodes. RSC Adv 2024; 14:29874-29882. [PMID: 39301238 PMCID: PMC11411416 DOI: 10.1039/d4ra05045b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Phenylketonuria (PKU) is a genetic disorder associated with the metabolic dysfunction of the phenylalanine hydroxylase enzyme, which catalyses the conversion of l-phenylalanine (Phe) to l-tyrosine. Elevated levels of phenylalanine disrupt the central nervous system by impairing the myelination process and leading to mental retardation. Currently, commonly used diagnostic methods for PKU include the Guthrie test, liquid chromatography, and tandem mass spectrometry, all of which necessitate sophisticated infrastructure and costly equipment. Conversely, electrochemical detection methods hold promise in clinical diagnosis due to their high accuracy, rapid response time, and user-friendly nature. The choice of electrodes in electrochemical methods significantly influences sensitivity and analytical performance. In this study, we evaluated the performance of various nanomaterial-modified electrodes and compared their responses to the redox reaction of phenylalanine, focusing on detection capabilities in blood samples. Specifically, we examined carbon nanotube-gold nanoparticle modified carbon electrode (C-CNT-GNP), graphene-gold nanoparticle modified carbon electrode (C-GPH-GNP), electrochemically reduced graphene oxide (ERGO) modified carbon electrode (C-ERGO), bare carbon electrode (C-BARE), ERGO modified gold electrode (Au-ERGO), and bare gold electrode (Au-BARE) using amperometric detection. The performance of these electrodes was compared in terms of their limit of detection (LOD), limit of quantification (LOQ), and sensitivity. Among all electrodes, ERGO gold electrode showed the lowest LOD, LOQ, and highest sensitivity. This study highlights the potential of ERGO-modified gold electrodes for enhancing electrocatalytic activity, thus offering promising prospects for further diagnostic applications.
Collapse
Affiliation(s)
- Ipek Akyilmaz
- Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division Ankara Turkey
| | - Naim Yagiz Demir
- Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division Ankara Turkey
| | - Deniz Bas
- Department of Food Engineering, Faculty of Engineering, Cankiri Karatekin University Cankiri Turkey
| | - Memed Duman
- Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division Ankara Turkey
| |
Collapse
|
3
|
Silva RM, da Silva AD, Camargo JR, de Castro BS, Meireles LM, Silva PS, Janegitz BC, Silva TA. Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications. BIOSENSORS 2023; 13:bios13040453. [PMID: 37185528 PMCID: PMC10136782 DOI: 10.3390/bios13040453] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical sensors consisting of screen-printed electrodes (SPEs) are recurrent devices in the recent literature for applications in different fields of interest and contribute to the expanding electroanalytical chemistry field. This is due to inherent characteristics that can be better (or only) achieved with the use of SPEs, including miniaturization, cost reduction, lower sample consumption, compatibility with portable equipment, and disposability. SPEs are also quite versatile; they can be manufactured using different formulations of conductive inks and substrates, and are of varied designs. Naturally, the analytical performance of SPEs is directly affected by the quality of the material used for printing and modifying the electrodes. In this sense, the most varied carbon nanomaterials have been explored for the preparation and modification of SPEs, providing devices with an enhanced electrochemical response and greater sensitivity, in addition to functionalized surfaces that can immobilize biological agents for the manufacture of biosensors. Considering the relevance and timeliness of the topic, this review aimed to provide an overview of the current scenario of the use of carbonaceous nanomaterials in the context of making electrochemical SPE sensors, from which different approaches will be presented, exploring materials traditionally investigated in electrochemistry, such as graphene, carbon nanotubes, carbon black, and those more recently investigated for this (carbon quantum dots, graphitic carbon nitride, and biochar). Perspectives on the use and expansion of these devices are also considered.
Collapse
Affiliation(s)
- Rafael Matias Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Jéssica Rocha Camargo
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | | | - Laís Muniz Meireles
- Federal Center for Technological Education of Minas Gerais, Timóteo 35180-008, MG, Brazil
| | | | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
4
|
Mehmandoust M, Erk N, Naser M, Soylak M. Molecularly imprinted polymer film loaded on the metal–organic framework with improved performance using stabilized gold-doped graphite carbon nitride nanosheets for the single-step detection of Fenamiphos. Food Chem 2023; 404:134627. [DOI: 10.1016/j.foodchem.2022.134627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
5
|
Rahman H, Rafi M, Putra BR, Wahyuni WT. Electrochemical Sensors Based on a Composite of Electrochemically Reduced Graphene Oxide and PEDOT:PSS for Hydrazine Detection. ACS OMEGA 2023; 8:3258-3269. [PMID: 36713748 PMCID: PMC9878640 DOI: 10.1021/acsomega.2c06791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 05/27/2023]
Abstract
In this study, hydrazine sensors were developed from a composite of electrochemically reduced graphene oxide (ErGO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), deposited onto a glassy carbon electrode (GCE). The structural properties, electrochemical characterization, and surface morphologies of this hydrazine sensor were characterized by Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). In addition, the proposed hydrazine sensor also demonstrates good electrochemical and analytical performance when investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry techniques under optimal parameters. Using these investigated parameters, DPV and amperometry were chosen as techniques for hydrazine measurements and showed a linear range of concentration in the range of 0.2-100 μM. The obtained limits of detection and limits of quantitation for hydrazine measurements were 0.01 and 0.03 μM, respectively. In addition, the proposed sensor demonstrated good reproducibility and stability in hydrazine measurements in eight consecutive days. This fabricated hydrazine sensor also exhibited good selectivity against interference from Mg2+, K+, Zn2+, Fe2+, Na+, NO2 -, CH3COO-, SO4 2-, Cl-, ascorbic acid, chlorophenol, and triclosan and combined interferences, as well as it depicted %RSD values of less than 5%. In conclusion, this proposed sensor based on GCE modified with ErGO/PEDOT:PSS displays exceptional electrochemical performance for use in hydrazine measurements and have the potential to be employed in practical applications.
Collapse
Affiliation(s)
- Hemas
Arif Rahman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java16680, Indonesia
| | - Mohamad Rafi
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of
Research and Community Empowerment, IPB University, Bogor, West Java16680, Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research
and Innovation Agency (BRIN), PUSPIPTEK Area, Building No. 470, Setu Regency, South Tangerang, Banten15314, Indonesia
| | - Wulan Tri Wahyuni
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of
Research and Community Empowerment, IPB University, Bogor, West Java16680, Indonesia
| |
Collapse
|
6
|
Braz BA, Hospinal-Santiani M, Martins G, Pinto CS, Zarbin AJG, Beirão BCB, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH, Soccol CR. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. BIOSENSORS 2022; 12:bios12100885. [PMID: 36291021 PMCID: PMC9599560 DOI: 10.3390/bios12100885] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/02/2023]
Abstract
The development of immunosensors to detect antibodies or antigens has stood out in the face of traditional methods for diagnosing emerging diseases such as the one caused by the SARS-CoV-2 virus. The present study reports the construction of a simplified electrochemical immunosensor using a graphene-binding peptide applied as a recognition site to detect SARS-CoV-2 antibodies. A screen-printed electrode was used for sensor preparation by adding a solution of peptide and reduced graphene oxide (rGO). The peptide-rGO suspension was characterized by scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The electrochemical characterization (electrochemical impedance spectroscopy-EIS, cyclic voltammetry-CV and differential pulse voltammetry-DPV) was performed on the modified electrode. The immunosensor response is based on the decrease in the faradaic signal of an electrochemical probe resulting from immunocomplex formation. Using the best set of experimental conditions, the analytic curve obtained showed a good linear regression (r2 = 0.913) and a limit of detection (LOD) of 0.77 μg mL-1 for antibody detection. The CV and EIS results proved the efficiency of device assembly. The high selectivity of the platform, which can be attributed to the peptide, was demonstrated by the decrease in the current percentage for samples with antibody against the SARS-CoV-2 S protein and the increase in the other antibodies tested. Additionally, the DPV measurements showed a clearly distinguishable response in assays against human serum samples, with sera with a response above 95% being considered negative, whereas responses below this value were considered positive. The diagnostic platform developed with specific peptides is promising and has the potential for application in the diagnosis of other infections that lead to high antibody titers.
Collapse
Affiliation(s)
- Beatriz A. Braz
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Cristian S. Pinto
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Aldo J. G. Zarbin
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Breno C. B. Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Márcio F. Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Luiz H. Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Carlos R. Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| |
Collapse
|
7
|
Turkkan G, Bas SZ, Atacan K, Ozmen M. An electrochemical sensor based on a Co 3O 4-ERGO nanocomposite modified screen-printed electrode for detection of uric acid in artificial saliva. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:67-75. [PMID: 34904141 DOI: 10.1039/d1ay01744f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we report the fabrication of a nanocomposite consisting of Co3O4 nanoparticles (Co3O4 NPs) and electrochemically reduced graphene oxide (ERGO) on a screen-printed electrode (SPE) and its sensing performance in the electrochemical detection of uric acid (UA). The surface modification of the electrode was confirmed by using a variety of characterization techniques (FE-SEM, XRD, AFM, EDX, WCA, FTIR, and Raman spectroscopy). In addition, the surface modification was electrochemically characterized step by step through CV, EIS and DPV techniques, and the results showed that the Co3O4-ERGO nanocomposite exhibited highly sensitive and selective sensing performance towards the oxidation of UA in 0.1 M (pH 7.0) phosphate buffer solution (PBS). The sensor (Co3O4-ERGO/SPE) signals were observed to be linear to the UA concentration in the range of 5 μM to 500 μM (R2 = 0.9985). After revealing its other performance characteristics, such as repeatability, reproducibility, stability, sensitivity, and selectivity, the sensor was successfully applied to the analysis of UA in artificial saliva samples.
Collapse
Affiliation(s)
- Gizem Turkkan
- Department of Chemistry, Selcuk University, 42250, Konya, Turkey.
| | - Salih Zeki Bas
- Department of Chemistry, Selcuk University, 42250, Konya, Turkey.
| | - Keziban Atacan
- Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), Sakarya University, 54187, Sakarya, Turkey
| | - Mustafa Ozmen
- Department of Chemistry, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
8
|
Gunes O, Sarilmaz A, Bas SZ, Ozmen M, Ozel F, Ersoz M. Electrochemical Detection of Epinephrine Based on a Screen‐printed Electrode Modified with NiO−ERGO Nanocomposite Film. ELECTROANAL 2021. [DOI: 10.1002/elan.202100394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozlem Gunes
- Department of Chemistry Selcuk University 42250 Konya Turkey
| | - Adem Sarilmaz
- Department of Metallurgical and Materials Engineering Karamanoglu Mehmetbey University 70200 Karaman Turkey
| | - Salih Zeki Bas
- Department of Chemistry Selcuk University 42250 Konya Turkey
| | - Mustafa Ozmen
- Department of Chemistry Selcuk University 42250 Konya Turkey
| | - Faruk Ozel
- Department of Metallurgical and Materials Engineering Karamanoglu Mehmetbey University 70200 Karaman Turkey
| | - Mustafa Ersoz
- Department of Chemistry Selcuk University 42250 Konya Turkey
| |
Collapse
|
9
|
Karimi-Maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Senthil Kumar P, Rouhi J, Baghayeri M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J Colloid Interface Sci 2021; 592:174-185. [DOI: 10.1016/j.jcis.2021.02.066] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
|
10
|
Gogola JL, Martins G, Gevaerd A, Blanes L, Cardoso J, Marchini FK, Banks CE, Bergamini MF, Marcolino-Junior LH. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 2021; 1166:338548. [PMID: 34022998 DOI: 10.1016/j.aca.2021.338548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV) is still considered a pandemic, and the detection of p24-HIV protein has an important role in the early diagnosis of HIV in adults and newborns. The accessibility of these trials depends on the price and execution difficulty of the method, which can be reduced using electrochemical methods by using enzymeless approaches, disposable and accurate devices. In this work, graphene quantum dots were acquired by a simple synthesis and employed as an electrochemical signal amplifier and support for the aptamer immobilization through a feasible and stable modification of disposable screen-printed electrodes. The device has been easily assembled and used to detect p24-HIV protein without the interference of similar proteins or sample matrix. Using the best set of experimental conditions, a linear correlation between analytical signal and log of p24-HIV concentration from 0.93 ng mL-1 to 93 μg mL-1 and a limit of detection of 51.7 pg mL-1 were observed. The developed device was applied to p24 determination in spiked human serum and provided distinct levels of signal for positive and negative samples, successfully identifying real samples with the target protein. This sensor is a step towards the development of point-of-care devices and the popularization of electrochemical methods for trials and diagnostics of relevant diseases.
Collapse
Affiliation(s)
- Jeferson L Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Ava Gevaerd
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Fabricio Klerynton Marchini
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street Manchester M1 5GD, UK
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|