1
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
2
|
Jin S, Chen H, Pan K, Li R, Ma X, Yuan R, Meng X, He H. State-of-the-art electrochemical biosensors based on covalent organic frameworks and their hybrid materials. Talanta 2024; 270:125557. [PMID: 38128284 DOI: 10.1016/j.talanta.2023.125557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
As the development of global population and industry civilization, the accurate and sensitive detection of intended analytes is becoming an important and great challenge in the field of environmental, medical, and public safety. Recently, electrochemical biosensors have been constructed and used in sensing fields, such as antibiotics, pesticides, specific markers of cancer, and so on. Functional materials have been designed and prepared to enhance detection performance. Among all reported materials, covalent organic frameworks (COFs) are emerging as porous crystalline materials to construct electrochemical biosensors, because COFs have many unique advantages, including large surface area, high stability, atom-level designability, and diversity, to achieve a far better sensing performance. In this comprehensive review, we not only summarize state-of-the-art electrochemical biosensors based on COFs and their hybrid materials but also highlight and discuss some typical examples in detail. We finally provide the challenge and future perspective of COFs-based electrochemical biosensors.
Collapse
Affiliation(s)
- Shi Jin
- Department of Basic Science, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Hongxu Chen
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Kexuan Pan
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Ruyu Li
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Xingyu Ma
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Xianshu Meng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China
| | - Hongming He
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China.
| |
Collapse
|
3
|
Cossettini A, Pasquardini L, Romani A, Feriani A, Pinamonti D, Manzano M. Computational aptamer design for spike glycoprotein (S) (SARS CoV-2) detection with an electrochemical aptasensor. Appl Microbiol Biotechnol 2024; 108:259. [PMID: 38470514 PMCID: PMC10933206 DOI: 10.1007/s00253-024-13066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
A new bioinformatic platform (APTERION) was used to design in a short time and with high specificity an aptamer for the detection of the spike protein, a structural protein of SARS-CoV-2 virus, responsible for the COVID-19 pandemic. The aptamer concentration on the carbon electrode surface was optimized using static contact angle and fluorescence method, while specificity was tested using differential pulse voltammetry (DPV) associated to carbon screen-printed electrodes. The data obtained demonstrated the good features of the aptamer which could be used to create a rapid method for the detection of SARS-CoV-2 virus. In fact, it is specific for spike also when tested against bovine serum albumin and lysozyme, competitor proteins if saliva is used as sample to test for the virus presence. Spectrofluorometric characterization allowed to measure the amount of aptamer present on the carbon electrode surface, while DPV measurements proved the affinity of the aptamer towards the spike protein and gave quantitative results. The acquired data allowed to conclude that the APTERION bioinformatic platform is a good method for aptamer design for rapidity and specificity. KEY POINTS: • Spike protein detection using an electrochemical biosensor • Aptamer characterization by contact angle and fluorescent measurements on electrode surface • Computational design of specific aptamers to speed up the aptameric sequence time.
Collapse
Affiliation(s)
- Alessia Cossettini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100, Udine, Italy
| | | | | | - Aldo Feriani
- Arta Peptidion srls, Via Quasimodo 11, 43126, Parma, Italy
| | - Debora Pinamonti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100, Udine, Italy
| | - Marisa Manzano
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100, Udine, Italy.
| |
Collapse
|
4
|
Malecka-Baturo K, Żółtowska P, Jackowska A, Kurzątkowska-Adaszyńska K, Grabowska I. Electrochemical Aptasensing Platform for the Detection of Retinol Binding Protein-4. BIOSENSORS 2024; 14:101. [PMID: 38392020 PMCID: PMC10887324 DOI: 10.3390/bios14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Here, we present the results of our the electrochemical aptasensing strategy for retinol binding protein-4 (RBP-4) detection based on a thiolated aptamer against RBP-4 and 6-mercaptohexanol (MCH) directly immobilized on a gold electrode surface. The most important parameters affecting the magnitude of the analytical signal generated were optimized: (i) the presence of magnesium ions in the immobilization and measurement buffer, (ii) the concentration of aptamer in the immobilization solution and (iii) its folding procedure. In this work, a systematic assessment of the electrochemical parameters related to the optimization of the sensing layer of the aptasensor was carried out (electron transfer coefficients (α), electron transfer rate constants (k0) and surface coverage of the thiolated aptamer probe (ΓApt)). Then, under the optimized conditions, the analytical response towards RBP-4 protein, in the presence of an Fe(CN)63-/4- redox couple in the supporting solution was assessed. The proposed electrochemical strategy allowed for RBP-4 detection in the concentration range between 100 and 1000 ng/mL with a limit of detection equal to 44 ng/mL based on electrochemical impedance spectroscopy (EIS). The specificity studies against other diabetes biomarkers, including vaspin and adiponectin, proved the selectivity of the proposed platform. These preliminary results will be used in the next step to miniaturize and test the sensor in real samples.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Paulina Żółtowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Agnieszka Jackowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Katarzyna Kurzątkowska-Adaszyńska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| |
Collapse
|
5
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Hakimian F, Mazloum-Ardakani M. Ag nanorod@PEI-Ag nanohybrid as an excellent signal label for sensitive and rapid detection of serum HER2. Sci Rep 2023; 13:21792. [PMID: 38066021 PMCID: PMC10709618 DOI: 10.1038/s41598-023-48838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The accurate detection of Human epidermal growth factor receptor-2 (HER2) as a critical breast cancer biomarker can be essential for the early selection of therapeutic approaches. HER2 is a prominent component of a signaling network. Overexpression of the HER2 protein due to amplification of its gene leads to the development of an aggressive subtype of breast cancer. Patients with tumors that overexpress HER2 are eligible for treatment that significantly reduces mortality rates. Herein, we present a fast and simple method for detecting serum HER2. A new electrochemical label has been developed using charged Ag nanorod@ polyethylenimine-Ag (Ag NR@ PEI-Ag) nanohybrid. The synthesized Ag NR@PEI-Ag nanohybrid simultaneously has the electroactive property of silver and the large surface area of the PEI, which results in the enhancement of the detection signal. So, using Ag NR@PEI-Ag nanohybrid as the electrochemical label, a simple, fast, and sensitive electrochemical biosensor was designed to detect HER2. This way, after immobilizing HER2 aptamer on the Au electrode surface, HER2 or human serum was exposed to the aptamer. Then, the positively charged Ag NR@PEI-Ag nanohybrid was adsorbed onto the negatively charged aptamer-HER2 complex, and the current that was produced due to the Ag/AgCl reaction was measured as the electrochemical signal. The aptasensor shows a broad linear response from 10-12 to 10-7 g, a low detection limit (LOD) of 10 pg, and a total assay time of ~ 30 min.
Collapse
Affiliation(s)
- Fatemeh Hakimian
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | | |
Collapse
|
7
|
Rousseau CR, Kumakli H, White RJ. Perspective-Assessing Electrochemical, Aptamer-Based Sensors for Dynamic Monitoring of Cellular Signaling. ECS SENSORS PLUS 2023; 2:042401. [PMID: 38152504 PMCID: PMC10750225 DOI: 10.1149/2754-2726/ad15a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Electrochemical, aptamer-based (E-AB) sensors provide a generalizable strategy to quantitatively detect a variety of targets including small molecules and proteins. The key signaling attributes of E-AB sensors (sensitivity, selectivity, specificity, and reagentless and dynamic sensing ability) make them well suited to monitor dynamic processes in complex environments. A key bioanalytical challenge that could benefit from the detection capabilities of E-AB sensors is that of cell signaling, which involves the release of molecular messengers into the extracellular space. Here, we provide a perspective on why E-AB sensors are suited for this measurement, sensor requirements, and pioneering examples of cellular signaling measurements.
Collapse
Affiliation(s)
- Celeste R. Rousseau
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Hope Kumakli
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| |
Collapse
|
8
|
Liang G, Song L, Gao Y, Wu K, Guo R, Chen R, Zhen J, Pan L. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review. TOXICS 2023; 11:513. [PMID: 37368613 DOI: 10.3390/toxics11060513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.
Collapse
Affiliation(s)
- Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Le Song
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yufei Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050024, China
| | - Kailong Wu
- Ulanqab Agricultural and Livestock Product Quality Safety Center, Ulanqab 012406, China
| | - Rui Guo
- Datong Comprehensive Inspection and Testing Center, Datong 037000, China
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jianhui Zhen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
9
|
Kaur M, Gaba J, Singh K, Bhatia Y, Singh A, Singh N. Recent Advances in Recognition Receptors for Electrochemical Biosensing of Mycotoxins-A Review. BIOSENSORS 2023; 13:391. [PMID: 36979603 PMCID: PMC10046307 DOI: 10.3390/bios13030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. An electrochemical biosensor consists of two main units, a recognition receptor and a signal transducer. Natural or artificial antibodies, aptamers, molecularly imprinted polymers (MIP), peptides, and DNAzymes have been extensively employed as selective recognition receptors for the electrochemical biosensing of mycotoxins. This article affords a detailed discussion of the recent advances and future prospects of various types of recognition receptors exploited in the electrochemical biosensing of mycotoxins.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Jyoti Gaba
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Yashika Bhatia
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| |
Collapse
|
10
|
Felicia WXL, Rovina K, ‘Aqilah NMN, Vonnie JM, Yin KW, Huda N. Assessing Meat Freshness via Nanotechnology Biosensors: Is the World Prepared for Lightning-Fast Pace Methods? BIOSENSORS 2023; 13:217. [PMID: 36831985 PMCID: PMC9954215 DOI: 10.3390/bios13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In the rapidly evolving field of food science, nanotechnology-based biosensors are one of the most intriguing techniques for tracking meat freshness. Purine derivatives, especially hypoxanthine and xanthine, are important signs of food going bad, especially in meat and meat products. This article compares the analytical performance parameters of traditional biosensor techniques and nanotechnology-based biosensor techniques that can be used to find purine derivatives in meat samples. In the introduction, we discussed the significance of purine metabolisms as analytes in the field of food science. Traditional methods of analysis and biosensors based on nanotechnology were also briefly explained. A comprehensive section of conventional and nanotechnology-based biosensing techniques is covered in detail, along with their analytical performance parameters (selectivity, sensitivity, linearity, and detection limit) in meat samples. Furthermore, the comparison of the methods above was thoroughly explained. In the last part, the pros and cons of the methods and the future of the nanotechnology-based biosensors that have been created are discussed.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Koh Wee Yin
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
11
|
Low fouling aptasensing of rivaroxaban in real samples using poly (toluidine blue) decorated by silver nanoparticle: A new platform for the cardiovascular disease analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
12
|
Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing. Int J Mol Sci 2022; 24:ijms24010175. [PMID: 36613616 PMCID: PMC9820729 DOI: 10.3390/ijms24010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides.
Collapse
|
13
|
Recent Progresses in Development of Biosensors for Thrombin Detection. BIOSENSORS 2022; 12:bios12090767. [PMID: 36140153 PMCID: PMC9496736 DOI: 10.3390/bios12090767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2022]
Abstract
Thrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding. The rapid and sensitive detection of thrombin is important in biological analysis and clinical diagnosis. Hence, various biosensors for thrombin measurement have been developed. Biosensors are devices that produce a quantifiable signal from biological interactions in proportion to the concentration of a target analyte. An aptasensor is a biosensor in which a DNA or RNA aptamer has been used as a biological recognition element and can identify target molecules with a high degree of sensitivity and affinity. Designed biosensors could provide effective methods for the highly selective and specific detection of thrombin. This review has attempted to provide an update of the various biosensors proposed in the literature, which have been designed for thrombin detection. According to their various transducers, the constructions and compositions, the performance, benefits, and restrictions of each are summarized and compared.
Collapse
|
14
|
Comparison of the modification of graphite electrodes with poly(4-aminobenzoic acid) and poly(4-hydroxyphenylacetic acid) for determination of Pb(II). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Altuner EE, Ozalp VC, Yilmaz MD, Sudagidan M, Aygun A, Acar EE, Tasbasi BB, Sen F. Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. CHEMOSPHERE 2022; 297:134077. [PMID: 35218784 DOI: 10.1016/j.chemosphere.2022.134077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
This study, it is aimed to develop an electrochemical aptasensor that can detect phosphate ions using 3.3'5.5' tetramethylbenzidine (TMB). It is based on the principle of converting the binding affinity of the target molecule phosphate ion (PO43-) into an electrochemical signal with specific aptamer sequences for the aptasensor to be developed. The aptamer structure served as a gate for the TMB to be released and was used to trap the TMB molecule in mesoporous silica nanoparticles (MSNPs). The samples for this study were characterized by transmission electron spectroscopy (TEM), Brunner-Emmet-Teller, dynamic light scattering&electrophoretic light scattering, and induction coupled plasma atomic emission spectroscopy. According to TEM analysis, MSNPs have a morphologically hexagonal structure and an average size of 208 nm. In this study, palladium-carbon nanoparticles (Pd/C NPs) with catalytic reaction were used as an alternative to the biologically used horseradish peroxidase (HRP) enzyme for the release of TMB in the presence of phosphate ions. The limit of detection (LOD) was calculated as 0.983 μM, the limit of determination (LOQ) was calculated as 3.276 μM, and the dynamic linear phosphate range was found to be 50-1000 μM. The most important advantage of this bio-based aptasensor assembly is that it does not contain molecules such as a protein that cannot be stored for a long time at room temperature, so its shelf life is very long compared to similar systems developed with antibodies. The proposed sensor shows good recovery in phosphate ion detection and is considered to have great potential among electrochemical sensors.
Collapse
Affiliation(s)
- Elif Esra Altuner
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| | - Veli Cengiz Ozalp
- Medical School, Department of Medical Biology, Atilim University, 06830, Ankara, Turkiye.
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Mert Sudagidan
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Aysenur Aygun
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye
| | - Elif Esma Acar
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Behiye Busra Tasbasi
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Fatih Sen
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| |
Collapse
|
16
|
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022; 63:9098-9110. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibiotic contamination is becoming a prominent global issue. Therefore, sensitive, specific and simple technology is desirable the demand for antibiotics detection. Biosensors based on split aptamer has gradually attracted extensive attention for antibiotic detection due to its higher sensitivity, lower cost, false positive/negative avoidance and flexibility in sensor design. Although many of the reported split aptamers are antibiotics aptamers, the acquisition and mechanism of splitting is still unknow. In this review, six reported split aptamers in antibiotics are outlined, including Enrofloxacin, Kanamycin, Tetracycline, Tobramycin, Neomycin, Streptomycin, which have contributed to promote interest, awareness and thoughts into this emerging research field. The study introduced the pros and cons of split aptamers, summarized the assembly principle of split aptamer and discussed the intermolecular binding of antibiotic-aptamer complexes. In addition, the recent application of split aptamers in antibiotic detection are introduced. Split aptamers have a promising future in the design and development of biosensors for antibiotic detection in food and other field. The development of the antibiotic split aptamer meets many challenges including mechanism discovery, stability improvement and new biosensor development. It is believed that split aptamer could be a powerful molecular probe and plays an important role in aptamer biosensor.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhixin Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | | | - Sobia Niazi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
18
|
Cui J, Kan L, Cheng F, Liu J, He L, Xue Y, Fang S, Zhang Z. Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers. Dalton Trans 2022; 51:2094-2104. [PMID: 35040456 DOI: 10.1039/d1dt03869a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, a novel porphyrin-based porous organic polymer (POP) was constructed using 5,10,15,20-tetramine (4-aminophenyl) porphyrin (TAPP) and 5,5'-diformyl-2,2'-bipyridine (DPDD) as organic ligands via a solvothermal method (represented as TAPP-DPDD-POP). Then, it was utilized as a bifunctional scaffold for constructing a sensitive sensing strategy toward the nucleocapsid phosphoprotein (N-gene) of SARS-CoV-2. The obtained TAPP-DPDD-POP is composed of nanospheres with a size of 100-300 nm and possesses a highly conjugated and π-π stacking network. The coexistence of the porphyrin and bipyridine moieties of TAPP-DPDD-POP afforded considerable electrochemical activity and a strong binding interaction toward the SARS-CoV-2 N-gene-targeted antibody and targeted the aptamer strands of the N-gene. The TAPP-DPDD-POP-based aptasensor and immunosensor were manufactured for the sensitive analysis of SARS-CoV-2 N-gene, and exhibited the limit of detection (LOD) of 0.59 fg mL-1 and 0.17 fg mL-1, respectively, within the range of 0.1 fg mL-1 to 1 ng mL-1 of N-gene. The sensing performances of both the TAPP-DPDD-POP-based aptasensor and immunosensor were better than those of existing electrochemical biosensors for analyzing the N-gene, accompanied with excellent stability, high selectivity and reproducibility. The TAPP-DPDD-POP-based aptasensor and immunosensor were then employed to detect the N-gene from various environments, including human serum, river water, and seafoods. This work provides a new method of using an electrochemically active POP to sensitively and selectively analyze SARS-CoV-2 in diverse environments.
Collapse
Affiliation(s)
- Jing Cui
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Lun Kan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Fang Cheng
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Jiameng Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Yulin Xue
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Shaoming Fang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, P. R. China.
| |
Collapse
|
19
|
Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly sensitive electrochemical DNA sensor for detection of the chemotherapeutic drug idarubicin mediated by Methylene blue (MB) has been developed. DNA from fish sperm has been immobilized at the electropolymerized layers of Azure B. The incorporation of MB into the DNA layers substantially increased the sensor sensitivity. The concentration range for idarubicin determination by cyclic voltammetry was from 1 fM to 0.1 nM, with a limit of detection (LOD) of 0.3 fM. Electrochemical impedance spectroscopy (EIS) in the presence of a redox probe ([Fe(CN)6]3−/4−) allowed for the widening of a linear range of idarubicin detection from 1 fM to 100 nM, retaining LOD 0.3 fM. The DNA sensor has been tested in various real and artificial biological fluids with good recovery ranging between 90–110%. The sensor has been successfully used for impedimetric idarubicin detection in medical preparation Zavedos®. The developed DNA biosensor could be useful for the control of the level of idarubicin during cancer therapy as well as for pharmacokinetics studies.
Collapse
|
20
|
Ma T, Bizzotto D. Improved Thermal Stability and Homogeneity of Low Probe Density DNA SAMs Using Potential-Assisted Thiol-Exchange Assembly Methods. Anal Chem 2021; 93:15973-15981. [PMID: 34813297 DOI: 10.1021/acs.analchem.1c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methods for producing DNA SAM-based sensors with improved thermal stability and control over the homogeneity of low DNA probe density will enable advanced sensor development. The thermal stability of low-coverage DNA SAMs was studied for surfaces prepared using potential-assisted thiol exchange (Edep) and compared to DNA SAMs prepared without control over the substrate potential (OCPdep). Both surface preparation methods were studied using in situ fluorescence microscopy and electrochemistry with fluorophore or redox-modified DNA SAMs on a single-crystal gold bead electrode. Fluorescence microscopy showed that the influence of the underlying surface crystallography was important in both cases. The highest thermal stability was realized for square or rectangular surface atomic structure (e.g., surfaces from 110 to 100). The 111 and related surfaces were the least thermally stable. The low DNA coverage surfaces prepared by Edep had better thermal stability and higher DNA probe mobility as compared to OCPdep-prepared surfaces with the similar coverage. These results were correlated with methylene blue redox-tagged DNA probes, which directly measured the average DNA coverage. Both methods indicated that Edep DNA SAMs were more uniformly distributed across the electrode surface, while the surfaces prepared via OCPdep assembled into clusters with reduced mobility. The potential-assisted thiol-exchange approach to preparing low-coverage DNA SAMs was shown to quickly create modified surfaces that were consistent, had mobility characteristics which should yield superior DNA hybridization efficiencies, and having greater thermal stability which will translate into a longer shelf-life.
Collapse
Affiliation(s)
- Tianxiao Ma
- AMPEL, University of British Columbia, Vancouver V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Dan Bizzotto
- AMPEL, University of British Columbia, Vancouver V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
21
|
Chen X, Wu H, Tang X, Zhang Z, Li P. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. ELECTROANAL 2021. [DOI: 10.1002/elan.202100223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| |
Collapse
|
22
|
Xu W, Liu T, Wang Y, Zhang W, Yao X, Hou B, Xie Y, Chu Z, Jin W. Au/In
2
O
3
Nanocubes Based Label‐free Aptasensor for Ultrasensitive and Rapid Recognition of Cardiac Troponin I. ELECTROANAL 2021. [DOI: 10.1002/elan.202100117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weijia Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Yiqing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
- College of Electrical Engineering and Control Science Nanjing Tech University Nanjing 211816 China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Bailing Hou
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Ying Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
23
|
Porfireva A, Plastinina K, Evtugyn V, Kuzin Y, Evtugyn G. Electrochemical DNA Sensor Based on Poly(Azure A) Obtained from the Buffer Saturated with Chloroform. SENSORS 2021; 21:s21092949. [PMID: 33922359 PMCID: PMC8122775 DOI: 10.3390/s21092949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 01/09/2023]
Abstract
Electropolymerized redox polymers offer broad opportunities in detection of biospecific interactions of DNA. In this work, Azure A was electrochemically polymerized by multiple cycling of the potential in phosphate buffer saturated with chloroform and applied for discrimination of the DNA damage. The influence of organic solvent on electrochemical properties of the coating was quantified and conditions for implementation of DNA in the growing polymer film were assessed using cyclic voltammetry, quartz crystal microbalance, and electrochemical impedance spectroscopy. As shown, both chloroform and DNA affected the morphology of the polymer surface and electropolymerization efficiency. The electrochemical DNA sensor developed made it possible to distinguish native and thermally and chemically damaged DNA by changes in the charge transfer resistance and capacitance.
Collapse
Affiliation(s)
- Anna Porfireva
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
| | - Kseniya Plastinina
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Yurii Kuzin
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
- Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence:
| |
Collapse
|