1
|
Brunetti B. Electrochemical Sensors and Biosensors for the Determination of Food Nutritional and Bioactive Compounds: Recent Advances. SENSORS (BASEL, SWITZERLAND) 2024; 24:6588. [PMID: 39460069 PMCID: PMC11511335 DOI: 10.3390/s24206588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The significance of food nutrients and bioactive compounds in human health has driven the development of many methods for their determination in different matrices. Among these, electroanalysis has gained popularity due to its cost-effectiveness, rapidity, and, in many cases, portability and minimal sample treatment. This review highlights key advances in electrochemical sensors and biosensors from 2019 to the present. Given the variability and the challenges of managing food matrices, the focus is limited to methods that have been thoroughly assessed for their applicability to real samples. The technical characteristics and analytical performance of the proposed sensors are discussed, along with breakthrough features and future trends.
Collapse
Affiliation(s)
- Barbara Brunetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS)DeFENS, University of Milan, Via Celoria 2, I-20133 Milan, Italy
| |
Collapse
|
2
|
Wang Q, Jia Q, Hu P, Ji L. Tunable Non-Enzymatic Glucose Electrochemical Sensing Based on the Ni/Co Bimetallic MOFs. Molecules 2023; 28:5649. [PMID: 37570619 PMCID: PMC10420269 DOI: 10.3390/molecules28155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Constructing high-performance glucose sensors is of great significance for the prevention and diagnosis of diabetes, and the key is to develop new sensitive materials. In this paper, a series of Ni2Co1-L MOFs (L = H2BPDC: 4,4'-biphenyldicarboxylic acid; H2NDC: 2,6-naphthalenedicarboxylic acid; H2BDC: 1,4-benzenedicarboxylic acid) were synthesized by a room temperature stirring method. The effects of metal centers and ligands on the structure, compositions, electrochemical properties of the obtained Ni2Co1-L MOFs were characterized, indicating the successful preparation of layered MOFs with different sizes, stacking degrees, electrochemical active areas, numbers of exposed active sites, and glucose catalytic activity. Among them, Ni2Co1-BDC exhibits a relatively thin and homogeneous plate-like morphology, and the Ni2Co1-BDC modified glassy carbon electrode (Ni2Co1-BDC/GCE) has the highest electrochemical performance. Furthermore, the mechanism of the enhanced glucose oxidation signal was investigated. It was shown that glucose has a higher electron transfer capacity and a larger apparent catalytic rate constant on the Ni2Co1-BDC/GCE surface. Therefore, tunable non-enzymatic glucose electrochemical sensing was carried out by regulating the metal centers and ligands. As a result, a high-sensitivity enzyme-free glucose sensing platform was successfully constructed based on the Ni2Co1-BDC/GCE, which has a wide linear range of 0.5-2899.5 μM, a low detection limit of 0.29 μM (S/N = 3), and a high sensitivity of 3925.3 μA mM-1 cm-2. Much more importantly, it was also successfully applied to the determination of glucose in human serum with satisfactory results, demonstrating its potential for glucose detection in real samples.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Q.W.); (Q.J.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Qi Jia
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Q.W.); (Q.J.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Peng Hu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Liudi Ji
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Dong L, Ren S, Zhang X, Yang Y, Wu Q, Lei T. In-situ synthesis of Pt nanoparticles/reduced graphene oxide/cellulose nanohybrid for nonenzymatic glucose sensing. Carbohydr Polym 2023; 303:120463. [PMID: 36657845 DOI: 10.1016/j.carbpol.2022.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
In recent years, nanocellulose-based bioinorganic nanohybrids have been exploited in numerous applications due to their unique nanostructure, excellent catalytic properties, and good biocompatibility. To the best of our knowledge, this is the first report on the simple and effective synthesis of graphene/cellulose (RGO/CNC) matrix-supported platinum nanoparticles (Pt NPs) for nonenzymatic electrochemical glucose sensing. The Pt/RGO/CNC nanohybrid presented a porous network structure, in which Pt NPs, RGO, and CNCs were integrated well. Here, cellulose nanocrystals act as a biocompatible framework for wrapped RGO and monodispersed Pt nanoparticles, effectively preventing the restacking of graphene during reduction. The superior glucose sensing performance of Pt/RGO/CNC modified glass carbon electrode (GCE) was achieved with a linear concentration range from 0.005 to 8.5 mM and a low detection limit of 2.1 μM. Moreover, the Pt/RGO/CNC/GCE showed remarkable sensitivity, selectivity, durability, and reproducibility. The obtained results indicate that the CNCs-based bioinorganic nanohybrids could be a promising electrode material in electrochemical biosensors.
Collapse
Affiliation(s)
- Lili Dong
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Suxia Ren
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Xiuqiang Zhang
- Henan Key Laboratory of Biomass Energy, Zhengzhou 450008, China
| | - Yantao Yang
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Koukouviti E, Plessas AK, Economou A, Thomaidis N, Papaefstathiou GS, Kokkinos C. 3D Printed Voltammetric Sensor Modified with an Fe(III)-Cluster for the Enzyme-Free Determination of Glucose in Sweat. BIOSENSORS 2022; 12:1156. [PMID: 36551123 PMCID: PMC9775037 DOI: 10.3390/bios12121156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
In this work, a 3D printed sensor modified with a water-stable complex of Fe(III) basic benzoate is presented for the voltammetric detection of glucose (GLU) in acidic epidermal skin conditions. The GLU sensor was produced by the drop-casting of Fe(III)-cluster ethanolic mixture on the surface of a 3D printed electrode fabricated by a carbon black loaded polylactic acid filament. The oxidation of GLU was electrocatalyzed by Fe(III), which was electrochemically generated in-situ by the Fe(III)-cluster precursor. The GLU determination was carried out by differential pulse voltammetry without the interference from common electroactive metabolites presented in sweat (such as urea, uric acid, and lactic acid), offering a limit of detection of 4.3 μmol L-1. The exceptional electrochemical performance of [Fe3O(PhCO2)6(H2O)3]∙PhCO2 combined with 3D printing technology forms an innovative and low-cost enzyme-free sensor suitable for noninvasive applications, opening the way for integrated 3D printed wearable biodevices.
Collapse
Affiliation(s)
- Eleni Koukouviti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Alexios K. Plessas
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Giannis S. Papaefstathiou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
5
|
Fu Y, Du C, Zhang Q, Xiao K, Zhang X, Chen J. Colorimetric and Photocurrent-Polarity-Switching Photoelectrochemical Dual-Mode Sensing Platform for Highly Selective Detection of Mercury Ions Based on the Split G-Quadruplex-Hemin Complex. Anal Chem 2022; 94:15040-15047. [PMID: 36259408 DOI: 10.1021/acs.analchem.2c03084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mercury ion (Hg2+) is one of the most harmful heavy metal ions with the greatest impact on public health. Herein, based on the excellent catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and the strong photocurrent-polarity-switching ability to SnS2 photoanode of the split G-quadruplex-hemin complex, the magnetic NiCo2O4@SiO2-NH2 sphere-assisted colorimetric and photoelectrochemical (PEC) dual-mode sensing platform was developed for the Hg2+ assay. First, the amino-labelled single-stranded DNA1 (S1) was immobilized on NiCo2O4@SiO2-NH2 and then partly hybridized with another single-stranded DNA2 (S2). When Hg2+ was present, the thymine-Hg2+-thymine base pairs between S1 and S2 were formed, causing the formation of the split G-quadruplex in the presence of K+. After addition of hemin, the split G-quadruplex-hemin complex was obtained and effectually catalyzed the H2O2-mediated oxidation of TMB. Thus, the color and absorbance intensity of the TMB solution were changed, resulting in the visual and colorimetric detection of Hg2+. The linear response range is 10 pM to 10 nM, and the detection limit is 3.8 pM. Meanwhile, the above G-quadruplex-hemin complex effectively switched the photocurrent polarity of SnS2-modified indium tin oxide electrode, leading to the sensitive and selective PEC assay of Hg2+ with a linear response range of 5 pM to 500 nM and a detection limit of 2.3 pM. Moreover, the developed dual-mode sensing platform provided mutual authentication of detection results in different modes, effectively improving the assay accuracy and confidence, and may have a good potential application in highly sensitive, selective, and accurate determination of Hg2+ in environmental fields.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|