1
|
Hernández LG, Garcia CHS, Souza JMFDE, Cruz GCNDA, Calábria LK, Moreno AM, Espindola FS, Souza DGDE, Sousa MVDE. Study of Melipona quadrifasciata brain under operant learning using proteomic and phosphoproteomic analysis. AN ACAD BRAS CIENC 2023; 95:e20201317. [PMID: 37585963 DOI: 10.1590/0001-3765202320201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/02/2021] [Indexed: 08/18/2023] Open
Abstract
Learning to anticipate events based on the predictive relationship between an action and an outcome (operant conditioning) is a form of associative learning shared by humans and most of other living beings, including invertebrates. Several behavioral studies on the mechanisms of operant conditioning have included Melipona quadrifasciata, a honey bee that is easily manipulated due to lack of sting. In this work, brain proteomes of Melipona bees trained using operant conditioning and untrained (control) bees were compared by two-dimensional gel electrophoresis analysis within pI range of 3-10 and 4-7; in order to find proteins specifically related to this type of associative learning.One protein was detected with differential protein abundance in the brains of trained bees, when compared to not trained ones, through computational gel imaging and statistical analysis. This protein was identified by peptide mass fingerprinting and MS/MS peptide fragmentation using a MALDI-TOF/TOF mass spectrometer as one isoform of arginine kinase monomer, apparently dephosphorylated. Brain protein maps were obtained by 2-DE (Two-dimensional gel electrophoresis) from a total proteins and phosphoproteins extract of the bee Melipona quadrifasciata. One isoform of arginine kinase, probably a dephosphorylated isoform, was significantly more abundant in the brain of trained bees using operant conditioning. Arginine kinase has been reported as an important enzyme of the energy releasing process in the visual system of the bee, but it may carry out additional and unexpected functions in the bee brain for learning process.
Collapse
Affiliation(s)
- Liudy G Hernández
- System Biology Department, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Cubanacán, Playa, P.O. Box 6162, 10600, La Habana, Cuba
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Carlos Henrique S Garcia
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
- Institute of Microbiology, San Francisco University of Quito, Av. Diego de Robles y Vía Interoceánica, Post Office Box 170901, Quito, Ecuador
| | - Jaques M F DE Souza
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Gabriel C N DA Cruz
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
- Superintendência da Polícia Tecnico Científica, Núcleo de Perícia Criminalística, Rua Fritz Jacobs, 1045, 15025-500 São José do Rio Preto, SP, Brazil
| | - Luciana Karen Calábria
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Av. Amazonas, 38405-320 Uberlândia, MG, Brazil
- Universidade Federal de Uberlândia, Instituto de Ciências Exatas e Naturais do Pontal, Rua Vinte, 1600, 38304-208 Ituiutaba, MG, Brazil
| | - Antonio Mauricio Moreno
- Universidade Federal de São Carlos, Departamento de Psicologia,Via Washington Luis, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
- Universidade Estadual do Sudoeste da Bahia, Departamento de Filosofia e Ciências Humanas, Caixa Postal 95, 45028-100 Vitória da Conquista, BA, Brazil
| | - Foued S Espindola
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Av. Amazonas, 38405-320 Uberlândia, MG, Brazil
| | - Deisy G DE Souza
- Universidade Federal de São Carlos, Departamento de Psicologia,Via Washington Luis, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Marcelo V DE Sousa
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
2
|
Teferra TF. Advanced and feasible pulses processing technologies for Ethiopia to achieve better economic and nutritional goals: A review. Heliyon 2021; 7:e07459. [PMID: 34286131 PMCID: PMC8273407 DOI: 10.1016/j.heliyon.2021.e07459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Background Pulses are the dried seeds of the Leguminosae family that serve as cheaper proteins, particularly in developing countries. They contain proteins ranging 20-25%. Pulses play important roles in the farming systems and in the diets of poor people. They are ideal crops for simultaneously achieving three key developmental goals: reducing poverty, improving human health, and enhancing ecosystem sustainability. The year 2016 was declared as the year of pulses by the United Nations. These growing global attentions given to legumes has resulted in increasing their nutritional and economic desirability. Objectives This review presents the potential of pulses processing in Ethiopia for enhanced nutritional and economic outcomes. Pulses are important foods and export commodity in Ethiopia, which are exported in unprocessed form, fetching low returns. Data and discussions There are advanced but simple pulses processing technologies that include concentrating or isolation of proteins for nutritional and other uses. Pin milling of legumes and air classification of the flour helps to obtain protein concentrate of 60-75% purity. Protein isolation by alkaline extraction and isoelectric precipitation results in proteins of 90-95% purity. Legume proteins are mainly globulins and albumins that are nutritionally of great quality. The protein products are being texturized by thermal and mechanical means to make meat analogues, substitutes and extenders. Summary and conclusion Ethiopia being one of the significant legume producers, can benefit from this growing market by adopting the processing technologies and exporting premium quality plant proteins. This help Ethiopia satisfy domestic protein needs for child nutrition. This review summarizes the potentials for developing pulses processing technologies in Ethiopia for better economic and nutritional benefits.
Collapse
Affiliation(s)
- Tadesse Fikre Teferra
- School of Nutrition, Food Science and Technology, Hawassa University, P. O. Box 05 C/O, Hawassa, Ethiopia
| |
Collapse
|
3
|
Awad D, Brueck T. Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Anal Bioanal Chem 2020; 412:449-462. [PMID: 31797019 PMCID: PMC6992551 DOI: 10.1007/s00216-019-02254-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 11/03/2022]
Abstract
In the last decades, microbial oils have been extensively investigated as a renewable platform for biofuel and oleochemical production. Offering a potent alternative to plant-based oils, oleaginous microorganisms have been the target of ongoing metabolic engineering aimed at increasing growth and lipid yields, in addition to specialty fatty acids. Discovery proteomics is an attractive tool for elucidating lipogenesis and identifying metabolic bottlenecks, feedback regulation, and competing biosynthetic pathways. One prominent microbial oil producer is Cutaneotrichosporon oleaginosus, due to its broad feedstock catabolism and high lipid yield. However, this yeast has a recalcitrant cell wall and high cell lipid content, which complicates efficient and unbiased protein extraction for downstream proteomic analysis. Optimization efforts of protein sample preparation from C. oleaginosus in the present study encompasses the comparison of 8 lysis methods, 13 extraction buffers, and 17 purification methods with respect to protein abundance, proteome coverage, applicability, and physiochemical properties (pI, MW, hydrophobicity in addition to COG, and GO analysis). The optimized protocol presented in this work entails a one-step extraction method utilizing an optimal lysis method (liquid homogenization), which is augmented with a superior extraction buffer (50 mM Tris, 8/2 M Urea/Thiourea, and 1% C7BzO), followed by either of 2 advantageous purification methods (hexane/ethanol or TCA/acetone), depending on subsequent applications and target studies. This work presents a significant step forward towards implementation of efficient C. oleaginosus proteome mining for the identification of potential targets for genetic optimization of this yeast to improve lipogenesis and production of specialty lipids. Graphical abstract.
Collapse
Affiliation(s)
- Dania Awad
- Werner Siemens-Lehrstuhl für Synthetische Biotechnologie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Thomas Brueck
- Werner Siemens-Lehrstuhl für Synthetische Biotechnologie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
4
|
Hristova SH, Zhivkov AM. Isoelectric point of free and adsorbed cytochrome c determined by various methods. Colloids Surf B Biointerfaces 2019; 174:87-94. [DOI: 10.1016/j.colsurfb.2018.10.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023]
|
5
|
Niu L, Zhang H, Wu Z, Wang Y, Liu H, Wu X, Wang W. Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS One 2018; 13:e0202238. [PMID: 30557402 PMCID: PMC6296544 DOI: 10.1371/journal.pone.0202238] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Protein extracts obtained from cells or tissues often require removal of interfering substances for the preparation of high-quality protein samples in proteomic analysis. A number of protein extraction methods have been applied to various biological samples. TCA/acetone precipitation and phenol extraction, a common method of protein extraction, is thought to minimize protein degradation and activity of proteases as well as reduce contaminants like salts and polyphenols. However, the TCA/acetone precipitation method relies on the complete pulverization and repeated rinsing of tissue powder to remove the interfering substances, which is laborious and time-consuming. In addition, by prolonged incubation in TCA/acetone, the precipitated proteins are more difficult to re-dissolve. We have described a modified method of TCA/acetone precipitation of plant proteins for proteomic analysis. Proteins of cells or tissues were extracted using SDS-containing buffer, precipitated with equal volume of 20% TCA/acetone, and washed with acetone. Compared to classical TCA/acetone precipitation and simple acetone precipitation, this protocol generates comparable yields, spot numbers, and proteome profiling, but takes less time (ca. 45 min), thus avoiding excess protein modification and degradation after extended-period incubation in TCA/acetone or acetone. The modified TCA/acetone precipitation method is simple, fast, and suitable for proteomic analysis of various plant tissues in proteomic analysis.
Collapse
Affiliation(s)
- Liangjie Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhaokun Wu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yibo Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- * E-mail: (WW); (HL)
| | - Xiaolin Wu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- * E-mail: (WW); (HL)
| |
Collapse
|
6
|
Li Z, Luo R, Zhang Y, Yan X, Pang Q. Effective protein extraction from mycelium and fruiting body of Auricularia auricula for proteomics studies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1499111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ziwei Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, Heilongjiang, China
| | - Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, Heilongjiang, China
| | - Yuexin Zhang
- Heilongjiang Forest By-product and Speciality Institute, Mudanjiang, Heilongjiang, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, Heilongjiang, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Ingram T, Chakrabarti L. Proteomic profiling of mitochondria: what does it tell us about the ageing brain? Aging (Albany NY) 2016; 8:3161-3179. [PMID: 27992860 PMCID: PMC5270661 DOI: 10.18632/aging.101131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.
Collapse
Affiliation(s)
- Thomas Ingram
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Lisa Chakrabarti
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
8
|
Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 2016; 13:259-74. [PMID: 26837425 DOI: 10.1586/14789450.2016.1149470] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- D Allan Butterfield
- a Department of Chemistry, and Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY , USA
| | - Erika M Palmieri
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| | - Alessandra Castegna
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
9
|
Brown S, Norris G. Improved consistency in 2D gel electrophoresis: Sheep plasma as a test case. Electrophoresis 2016; 38:906-913. [PMID: 27925263 DOI: 10.1002/elps.201600433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022]
Abstract
Two-dimensional (2D) gel electrophoresis is a well-proven proteomic technique; however, sample-specific optimisation can often be necessary in order to get consistent quantitation. In particular, plasma samples are often smeared on 2D gels making spot matching difficult. A variety of different sample preparation and 2D methods were tested by using sheep plasma, and it was found that lowering sample pH prior to precipitation, using a long voltage gradient for isoelectric focusing and the inclusion of carrier ampholytes in the electrode wicks, improved both the quality and consistency of spot resolution. Analysis of the internal standards from two different DIGE experiments, one with conventional methodology and one with the improved method, showed that along with substantially improving the number of spots resolved, the average CV (coefficient of variation) of matched standards was lower with the new method. 428 matched spots were found using the improved method compared to 208 matched spots using conventional methodology. For the 174 spots that were matched between the two DIGE experiments, the average CV's of spot volumes were also significantly lower, at 0.20 for the new method compared to 0.24 for the conventional method (p < 0.001).
Collapse
Affiliation(s)
- Stuart Brown
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Gillian Norris
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Hintersteiner B, Lingg N, Janzek E, Mutschlechner O, Loibner H, Jungbauer A. Microheterogeneity of therapeutic monoclonal antibodies is governed by changes in the surface charge of the protein. Biotechnol J 2016; 11:1617-1627. [PMID: 27753240 DOI: 10.1002/biot.201600504] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023]
Abstract
It has previously been shown for individual antibodies, that the microheterogenity pattern can have a significant impact on various key characteristics of the product. The aim of this study to get a more generalized understanding of the importance of microheterogeneity. For that purpose, the charge variant pattern of various different commercially available therapeutic mAb products was compared using Cation-Exchange Chromatography with linear pH gradient antigen affinity, Fc-receptor affinity, antibody dependent cellular cytotoxicity (ADCC) and conformational stability. For three of the investigated antibodies, the basic charge variants showed a stronger binding affinity towards FcγRIIIa as well as an increased ADCC response. Differences in the conformational stability of antibody charge variants and the corresponding reference samples could not be detected by differential scanning calorimetry. The different biological properties of the mAb variants are therefore governed by changes in the surface charge of the protein and not by an altered structure. This can help to identify aspects of microheterogeneity that are critical for product quality and can lead to further improvements in the development and production of therapeutic antibody products.
Collapse
Affiliation(s)
- Beate Hintersteiner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Janzek
- Apeiron Biologics AG, Campus-Vienna-Biocenter 5, Vienna, Austria
| | | | - Hans Loibner
- Apeiron Biologics AG, Campus-Vienna-Biocenter 5, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Xu X, Shi L, Wang M. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1287-1297. [PMID: 27593353 DOI: 10.1016/j.envpol.2016.08.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
In our earlier work, Tigriopus japonicus were subjected to different mercuric chloride treatments (0-50 μg/L in the seawater) for five generations (F0-F4), and they were subsequently resumed under clean environments for one generation, i.e., F5. Accumulative effects were hypothesized to participate in mercury (Hg) multigenerational toxicity, however phenotypic plasticity could be responsible for metal resistance in this copepod against the long term exposure. Here, we specifically investigated the proteome profiles in the F0, F2, and F5 copepods of the control and 50 μg/L metal treatment, respectively, so as to elucidate the action mechanisms for Hg toxicity/tolerance in T. japonicus under the long term exposure. Functional enrichment analysis showed that a quite different proteomic response was observed in F5 compared with F0 and F2. Namely, the vast majority of enrichments were correlated with the down-regulated proteins in F0 and F2, whereas the enrichments for F5 were mostly attributable to the up-regulated proteins, suggesting that different mechanisms are responsible for Hg toxicity and tolerance (i.e., phenotypic plasticity). Hg toxicity prohibited many proteins in F0 and F2 which are related to several critical processes/pathways, e.g., protein translation, macromolecule metabolic process, DNA replication, cell cycle, cuticle organization, vitellogenesis, etc. In F5, many up-regulated proteins were enriched into compensatory systems, such as carbohydrate metabolism, myosin reorganizations, and stress-related defense pathway. Notably, glycolysis (an oxygen-independent pathway) was enhanced for energy allocation into metal detoxification and tolerance. Taken together, proteomics provides novel mechanistic insights into phenotypic plasticity used by T. japonicus when challenged with cumulative effects due to Hg multigenerational toxicity.
Collapse
Affiliation(s)
- Xiaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China; Second Institute of Oceanography, State Oceanic Administration People's Republic of China, Hangzhou, 310012, China
| | - Lin Shi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
12
|
Hintersteiner B, Lingg N, Zhang P, Woen S, Hoi KM, Stranner S, Wiederkum S, Mutschlechner O, Schuster M, Loibner H, Jungbauer A. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. MAbs 2016; 8:1548-1560. [PMID: 27559765 PMCID: PMC5098448 DOI: 10.1080/19420862.2016.1225642] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.
Collapse
Affiliation(s)
- Beate Hintersteiner
- a Department of Biotechnology , University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| | - Nico Lingg
- a Department of Biotechnology , University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| | - Peiqing Zhang
- b Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , Centros , Singapore
| | - Susanto Woen
- b Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , Centros , Singapore
| | - Kong Meng Hoi
- b Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , Centros , Singapore
| | - Stefan Stranner
- c Apeiron Biologics AG, Campus-Vienna-Biocenter , Vienna , Austria
| | | | | | - Manfred Schuster
- c Apeiron Biologics AG, Campus-Vienna-Biocenter , Vienna , Austria
| | - Hans Loibner
- c Apeiron Biologics AG, Campus-Vienna-Biocenter , Vienna , Austria
| | - Alois Jungbauer
- a Department of Biotechnology , University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| |
Collapse
|
13
|
Lau BYC, Deb-Choudhury S, Morton JD, Clerens S, Dyer JM, Ramli US. Method developments to extract proteins from oil palm chromoplast for proteomic analysis. SPRINGERPLUS 2015; 4:791. [PMID: 26702380 PMCID: PMC4688294 DOI: 10.1186/s40064-015-1576-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/01/2015] [Indexed: 11/23/2022]
Abstract
Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC–MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function.
Collapse
Affiliation(s)
- Benjamin Yii Chung Lau
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia ; AgResearch Lincoln Research Centre, Christchurch, New Zealand ; Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - James D Morton
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Stefan Clerens
- AgResearch Lincoln Research Centre, Christchurch, New Zealand
| | - Jolon M Dyer
- AgResearch Lincoln Research Centre, Christchurch, New Zealand ; Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Umi Salamah Ramli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
14
|
Jankowska U, Latosinska A, Skupien-Rabian B, Swiderska B, Dziedzicka-Wasylewska M, Kedracka-Krok S. Optimized procedure of extraction, purification and proteomic analysis of nuclear proteins from mouse brain. J Neurosci Methods 2015; 261:1-9. [PMID: 26698226 DOI: 10.1016/j.jneumeth.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The cell nucleus is a highly dynamic subcellular compartment performing crucial processes for functioning and administration of the cell. Proteomic analysis of isolated nuclear fraction enables in-depth insight into these processes leading to better understanding of physiological and pathological state of the brain. There is no universal method for nuclear proteome investigation and each biological material needs individual optimization. An additional difficulty is the large amount of nucleic acids, which impairs isoelectrofocusing of proteins and shotgun mass spectrometry analysis of complex peptide samples. NEW METHOD We performed the first comprehensive optimization of intact nuclei isolation from mouse brain in combination with nuclear protein purification prior to two-dimensional gel electrophoresis (2DE) and gel-free proteomic analysis. RESULTS Application of sonication, digestion with nuclease and protein precipitation with acetone allowed to obtain high quality 2DE gels. Shotgun mass spectrometry analysis of isolated proteins proved an enrichment in nuclear proteins. The 66.4% of 265 identified proteins had assigned nucleus localization in UniProt database. Gene Ontology analysis using DAVID platform revealed the highest fold enrichment in spliceosome (24.5), nuclear periphery (12.4) and nuclear matrix (11.3). COMPARISON WITH EXISTING METHODS The proposed procedure is tailored to mouse brain tissue nuclear subproteome investigation. The quality of isolated nuclei, the effectiveness of the protein purification, efficiency of protein recovery after precipitation and overall method reproducibility was taken into detailed consideration. CONCLUSIONS The elaborated procedure could be further applied for in-depth proteomic analysis of molecular processes occurring in the mouse brain nucleus.
Collapse
Affiliation(s)
- Urszula Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Latosinska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bozena Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bianka Swiderska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
15
|
Separation of basic proteins from Leishmania using a combination of Free flow electrophoresis (FFE) and 2D electrophoresis (2-DE) under basic conditions. Methods Mol Biol 2015; 1201:247-59. [PMID: 25388119 DOI: 10.1007/978-1-4939-1438-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Basic proteins, an important class of proteins in intracellular organisms such as Leishmania, are usually underrepresented on 2D gels. This chapter describes a method combining basic proteins fractionation using Free flow electrophoresis in isoelectric focusing mode (IEF-FFE) followed by protein separation using two-dimensional gel electrophoresis (2-DE) in basic conditions. The combination of these two techniques represents a great improvement for the visualization of Leishmania proteins with basic pI using 2D gels.
Collapse
|
16
|
Santucci L, Bruschi M, Ghiggeri GM, Candiano G. The latest advancements in proteomic two-dimensional gel electrophoresis analysis applied to biological samples. Methods Mol Biol 2015; 1243:103-125. [PMID: 25384742 DOI: 10.1007/978-1-4939-1872-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.
Collapse
Affiliation(s)
- Laura Santucci
- Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Largo G. Gaslini 5, Genoa, Italy
| | | | | | | |
Collapse
|
17
|
Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range: Validation of the method parameters. J Chromatogr A 2014; 1373:124-30. [PMID: 25465369 DOI: 10.1016/j.chroma.2014.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022]
Abstract
Cation exchange chromatography has been routinely used for the quantification of monoclonal antibody (mAb) charge heterogeneity. A previously developed method utilizing pH gradients for the elution instead of salt gradients was validated according to current guidelines proposed by the ICH. The linearity, stability, accuracy, precision and the lower limit of quantification have been determined, using pure charge variant standards. The method is valid for the quantification of mAb samples with a charge heterogeneity between 1% and 50%. Three different approaches to obtaining pure standard material for the validation of bio-analytical methods for the quantification of charge heterogeneity of IgG are presented. These methods are based on salt gradient elution, pH gradient elution and displacement in cation exchange chromatography.
Collapse
|
18
|
Avoiding acidic region streaking in two-dimensional gel electrophoresis: Case study with two bacterial whole cell protein extracts. J Biosci 2014; 39:631-42. [DOI: 10.1007/s12038-014-9453-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Petrovská B, Jeřábková H, Chamrád I, Vrána J, Lenobel R, Uřinovská J, Šebela M, Doležel J. Proteomic Analysis of Barley Cell Nuclei Purified by Flow Sorting. Cytogenet Genome Res 2014; 143:78-86. [DOI: 10.1159/000365311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Wu X, Gong F, Wang W. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics 2014; 14:645-58. [PMID: 24395710 DOI: 10.1002/pmic.201300239] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022]
Abstract
Plant tissues contain large amounts of secondary compounds that significantly interfere with protein extraction and 2DE analysis. Thus, sample preparation is a crucial step prior to 2DE in plant proteomics. This tutorial highlights the guidelines that need to be followed to perform an adequate total protein extraction before 2DE in plant proteomics. We briefly describe the history, development, and feature of major sample preparation methods for the 2DE analysis of plant tissues, that is, trichloroacetic acid/acetone precipitation and phenol extraction. We introduce the interfering compounds in plant tissues and the general guidelines for tissue disruption, protein precipitation and resolubilization. We describe in details the advantages, limitations, and application of the trichloroacetic acid/acetone precipitation and phenol extraction methods to enable the readers to select the appropriate method for a specific species, tissue, or cell type. The current applications of the sample preparation methods in plant proteomics in the literature are analyzed. A comparative proteomic analysis between male and female plants of Pistacia chinensis is used as an example to represent the sample preparation methodology in 2DE-based proteomics. Finally, the current limitations and future development of these sample preparation methods are discussed. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP17).
Collapse
Affiliation(s)
- Xiaolin Wu
- State Key Laboratory of Wheat & Maize Crop Science in Henan Province, Synergetic Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | | | | |
Collapse
|
21
|
Baumann M, Meri S. Techniques for studying protein heterogeneity and post-translational modifications. Expert Rev Proteomics 2014; 1:207-17. [PMID: 15966815 DOI: 10.1586/14789450.1.2.207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins often undergo several post-translational modification steps in parallel to protein folding. These modifications can be transient or of a more permanent nature. Most modifications are, however, susceptible to alteration during the lifespan of proteins. Post-translational modifications thus generate variability in proteins that are far beyond that provided by the genetic code. Co- and post-translational modifications can convert the 20 specific codon-encoded amino acids into more than 100 variant amino acids with new properties. These, and a number of other modifications, can considerably increase the information content and functional repertoire of proteins, thus making their analysis of paramount importance for diagnostic and basic research purposes. Various methods used in proteomics, such as 2D gel electrophoresis, 2D liquid chromatography, mass spectrometry, affinity-based analytical methods, interaction analyses, ligand blotting techniques, protein crystallography and structure-function predictions, are all applicable for the analysis of these numerous secondary modifications. In this review, examples of some of these techniques in studying the heterogeneity of proteins are highlighted. In the future, these methods will become increasingly useful in biomarker searches and in clinical diagnostics.
Collapse
Affiliation(s)
- Marc Baumann
- Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, PO Box 63, Haartmaninkatu 8, FIN-00014, Finland.
| | | |
Collapse
|
22
|
Kočevar N, Grazio SF, Komel R. Two-dimensional gel electrophoresis of gastric tissue in an alkaline pH range. Proteomics 2014; 14:311-21. [PMID: 24293252 DOI: 10.1002/pmic.201200574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 10/09/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
2DE in combination with MS has facilitated the discovery of several proteins with altered abundance in gastric cancer. While acidic and wide pH ranges have been widely investigated, analysis in the alkaline pH range has not been specifically performed in gastric cancer to date. In the present study, we initially optimized the 2DE in alkaline pH range (pH 7-11) for gastric tissue samples. Using a modified lysis buffer, we analyzed pooled nontumor and tumor samples for proteins with altered abundance in gastric adenocarcinoma. We successfully identified 38 silver-stained spots as 24 different proteins. Four of these were chosen for investigation with immunoblotting on individual paired samples to determine whether the changes seen in 2DE represent the overall abundance of the protein or possibly only a single form. While mitochondrial trifunctional protein (MTP) subunits were decreased in 2DE gels, immunoblotting identified their overall abundance as being differently dysregulated: in the gastric tumor samples, the MTP-α subunit was decreased, and the MTP-β subunit was increased. On the other hand, heterogenous nuclear ribonucleoprotein M and galectin-4 were increased in the gastric tumor samples in both 2DE and immunoblotting.
Collapse
Affiliation(s)
- Nina Kočevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
23
|
Lingg N, Tan E, Hintersteiner B, Bardor M, Jungbauer A. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range. J Chromatogr A 2013; 1319:65-71. [PMID: 24183595 DOI: 10.1016/j.chroma.2013.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022]
Abstract
Recombinant antibodies with high isoelectric point are frequent since most of them are constructed from the same framework. Classically, cation exchange chromatography is used as a standard method for the determination of antibody charge heterogeneity. In contrast, in this study highly linear pH gradients were achieved by keeping the buffering capacity over the length of the gradient constant. The buffering compounds were selected to be unretained on the column and their respective concentration was adjusted in the start and end buffer of the pH gradient to achieve constant buffering capacity. This helps conserve linearity and stability of the gradient. The method allows quantification of charge variant distribution and the determination of chromatographic isoelectric point. To demonstrate the effectiveness of this novel method, a ProPac WCX-10 column was used to separate isoforms of trastuzumab biosimilar antibodies. Effects of pH gradient linearity and of varying the analytical amount of sample on the separation are shown.
Collapse
Affiliation(s)
- Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, No. 06-01 Centros, 138668 Singapore, Singapore
| | | | | | | | | |
Collapse
|
24
|
Ueda J, Matsuda Y, Yamahatsu K, Uchida E, Naito Z, Korc M, Ishiwata T. Epithelial splicing regulatory protein 1 is a favorable prognostic factor in pancreatic cancer that attenuates pancreatic metastases. Oncogene 2013; 33:4485-95. [PMID: 24077287 PMCID: PMC4041859 DOI: 10.1038/onc.2013.392] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 12/26/2022]
Abstract
Epithelial splicing regulatory protein 1 (ESRP1) binds the FGFR-2 auxiliary cis-element ISE/ISS-3, located in the intron between exon IIIb and IIIc, and primarily promotes FGFR-2 IIIb expression. Here we assessed the role of ESRP1 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis was performed using anti-ESRP1, FGFR-2 IIIb and FGFR-2 IIIc antibodies in 123 PDAC cases. ESRP1-expression vector and small interference RNA (siRNA) targeting ESRP1 were transfected into human PDAC cells, and cell growth, migration and invasion were analyzed. In vivo heterotopic and orthotopic implantations using ESRP1 overexpression clones were performed and effects on pancreatic tumor volumes and hepatic and pulmonary metastases determined. ESRP1 immunoreactivity was strong in the nuclei of cancer cells in well-to-moderately differentiated PDACs, but weak in poorly-differentiated cancers. Well-to-moderately differentiated cancers also exhibited high FGFR-2 IIIb and low FGFR-2 IIIc expression, whereas this ratio was reversed in the poorly-differentiated cancers. Increased ESRP1 expression was associated with longer survival by comparison with low-ESRP1 expression, and PANC-1 cells engineered to express ESRP1 exhibited increased FGFR-2 IIIb expression and decreased migration and invasion in vitro, whereas ESRP1 siRNA-transfected KLM-1 cells exhibited increased FGFR-2 IIIc expression and increased cell growth, migration and invasion. In vivo, ESRP1-overexpressing clones formed significantly fewer liver metastases as compared with control clones. ESRP1 regulates the expression pattern of FGFR-2 isoforms, attenuates cell growth, migration, invasion, and metastasis, and is a favorable prognostic factor in PDAC. Therefore, devising mechanisms to up-regulate ESRP1 may exert a beneficial therapeutic effect in PDAC.
Collapse
Affiliation(s)
- J Ueda
- 1] Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan [2] Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Y Matsuda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - K Yamahatsu
- 1] Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan [2] Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - E Uchida
- Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Z Naito
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - M Korc
- Departments of Medicine, and Biochemistry and Molecular Biology, Indiana University School of Medicine and the Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - T Ishiwata
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
25
|
Goliáš J, Humlová Z, Halada P, Hábová V, Janatková I, Tučková L. Identification of rice proteins recognized by the IgE antibodies of patients with food allergies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8851-8860. [PMID: 24016103 DOI: 10.1021/jf402759f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Similarity among food allergens is a great problem affecting the specificity of diagnosis and treatment of allergic patients. We have observed that 80% of patients with food (including wheat) and pollen allergies have increased IgE antibodies against rice proteins. By immunoblotting, we documented that boiling decreased solubility and IgE reactivity of PBS-extracted rice and wheat proteins, yet in SDS extracts this reactivity was only slightly changed. The sera of patients highly positive on the IgE immunoblot and positive in basophil activation and skin prick test with boiled rice components were used for characterizing the IgE-binding proteins separated by 1D or 2D electrophoresis. Using mass spectrometry, we identified 22 rice SDS soluble proteins. Six of them were new thermostable potential rice allergens: glutelin C precursor, granule-bound starch synthase 1 protein, disulfide isomerase-like 1-1 protein, hypothetical protein OsI_13867, putative acid phosphatase precursor 1, and a protein encoded by locus Os02g0453600. All of the identified rice proteins differed from known wheat allergens, except proteins belonging to the α-amylase/trypsin inhibitor family. Furthermore, we would suggest that in patients with high IgE reactivity to wheat and rice components, the IgE immunoblot and skin prick test with boiled rice proteins could be beneficial before diet recommendation.
Collapse
Affiliation(s)
- Jaroslav Goliáš
- Institute of Microbiology, Department of Immunology and Gnotobiology, Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
26
|
Yang Y, Gu C, Liao Y, Luo Q, Hu X, Zhang W, Shao H, Cheng G. Protein expressions and their immunogenicity from Riemerella anatipestifer cultured in iron restriction medium. PLoS One 2013; 8:e65901. [PMID: 23755292 PMCID: PMC3670913 DOI: 10.1371/journal.pone.0065901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022] Open
Abstract
Riemerella anatipestifer was cultured in both iron restriction media and normal media. Two-dimensional gel electrophoresis identified 23 proteins that significantly increased in the iron restriction media. Of them 12 proteins were analyzed with mass spectrography. Nine of 12 proteins belong to 6 different protein families: fibronectin type iii domain protein, secreted subtilase family protein, phosphoglycerate kinase, translation elongation factor, leucine-rich repeat-containing protein, and Galactose-binding domain-like protein. Other 3 proteins were novel with unknown function. Two novel proteins (Riean_1750 and Riean_1752) were expressed in prokaryotic expression systems. The specificities of these 2 novel proteins to R. anatipestifer were confirmed by western-blotting analysis. The ducks immunized with either protein had low mortality challenged by R. anatipestifer, 33.3% and 16.7%, respectively. The ducks developed 100% immunity when immunized with combined Riean_1750 and Riean_1752 proteins. The data suggested 2 novel proteins play important roles in the bacterial survival in the iron restricted environment. They could be used as subunit vaccines of R. anatipestifer.
Collapse
Affiliation(s)
- Yifei Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Changqin Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yonghong Liao
- Institute of Animal Science, Academy of Agricultural Science of Hubei Province, Wuhan, China
| | - Qingping Luo
- Institute of Animal Science, Academy of Agricultural Science of Hubei Province, Wuhan, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huabin Shao
- Institute of Animal Science, Academy of Agricultural Science of Hubei Province, Wuhan, China
- * E-mail: (HS); (GC)
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- * E-mail: (HS); (GC)
| |
Collapse
|
27
|
Kluge S, Rourou S, Vester D, Majoul S, Benndorf D, Genzel Y, Rapp E, Kallel H, Reichl U. Proteome analysis of virus-host cell interaction: rabies virus replication in Vero cells in two different media. Appl Microbiol Biotechnol 2013; 97:5493-506. [PMID: 23674149 DOI: 10.1007/s00253-013-4939-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8 days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.
Collapse
Affiliation(s)
- Sabine Kluge
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang M, Wang Y, Zhang L, Wang J, Hong H, Wang D. Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:123-131. [PMID: 23416409 DOI: 10.1016/j.aquatox.2013.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Mercury (Hg) is a widespread persistent pollutant in aquatic ecosystems. We investigated the protein profiles of medaka (Oryzias melastigma) liver chronically exposed to different mercuric chloride (HgCl2) concentrations (1 or 10 μg/L) for 60 d using two-dimensional difference gel electrophoresis (2D-DIGE), as well as cell ultrastructure and Hg content analysis of the hepatic tissue. The results showed that Hg exposure significantly increased metal accumulation in the liver, and subsequently damaged liver ultrastructure. Comparison of the 2D-DIGE protein profiles of the exposed and control groups revealed that the abundance of 45 protein spots was remarkably altered in response to Hg treatment. The altered spots were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, with the resultant identification of 33 spots. These proteins were mainly involved in cytoskeleton assembly, oxidative stress, and energy production. Among them, several proteins related to mitochondrial function (e.g. respiratory metabolism) were significantly altered in the treated hepatocytes, implying that this organelle might be the primary target for Hg attack in the cells. This study provided new insights into the molecular mechanisms and/or toxic pathways by which chronic Hg hepatotoxicity affects aquatic organisms, and also provided basic information for screening potential biomarkers for aquatic Hg monitoring.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
29
|
Kočevar N, Hudler P, Komel R. The progress of proteomic approaches in searching for cancer biomarkers. N Biotechnol 2013; 30:319-26. [PMID: 23165098 DOI: 10.1016/j.nbt.2012.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022]
|
30
|
Gauci VJ, Padula MP, Coorssen JR. Coomassie blue staining for high sensitivity gel-based proteomics. J Proteomics 2013; 90:96-106. [PMID: 23428344 DOI: 10.1016/j.jprot.2013.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/27/2013] [Indexed: 11/26/2022]
Abstract
Gel electrophoresis, particularly one- (1DE) and two-dimensional electrophoresis (2DE), remain among the most widely used top-down methods for resolving and analysing proteomes. Detection of the resulting protein maps relies on staining (i.e. colloidal coomassie blue (CCB) or SYPRO Ruby (SR), in addition to many others). Fluorescent in-gel protein stains are generally preferred for higher sensitivity, reduced background, and wider dynamic range. Although traditionally used for densitometry, CBB has fluorescent properties. Indeed, infrared detection of CCB stained protein was comparable to SR, with BioSafe (Bio-Rad) and the Neuhoff formulation (NCCB) identified as potentially superior to SR; a minor sensitivity issue encountered in gel-resolved proteomes; might have been due to the unified staining protocol used. Here the staining protocol for both CCB formulations was optimised, yielding improved selectivity without affecting sensitivity; the resulting linear dynamic range was similar for BioSafe and NCCB and somewhat better than SR. 2D gel-based analyses of mouse brain and Arabidopsis thaliana (leaf) proteomes indicated markedly superior spot detection using the NCCB formulation. Thus more sensitive, quantitative in-gel protein analyses can be achieved using NCCB, at a fraction of the cost.
Collapse
Affiliation(s)
- Victoria J Gauci
- Molecular Physiology, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Sydney, Australia
| | | | | |
Collapse
|
31
|
Zehr ES, Tabatabai LB, Bayles DO. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis. BMC Genomics 2012; 13:331. [PMID: 22823751 PMCID: PMC3447690 DOI: 10.1186/1471-2164-13-331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome’s G + C content was 39.93%. Twenty protein homologs to bacteriophage proteins, including 15 structural proteins, one lysogeny-related and one lysis-related protein, and three DNA replication proteins were identified by mass spectrometry. One of the tail proteins, gp36, may be a virulence-related protein. Conclusions Bacteriophage SuMu was characterized by genomic and proteomic methods and compared to enterobacteriophage Mu.
Collapse
Affiliation(s)
- Emilie S Zehr
- U.S. Department of Agriculture, Ruminant Diseases and Immunology, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | |
Collapse
|
32
|
Meisrimler CN, Lüthje S. IPG-strips versus off-gel fractionation: advantages and limits of two-dimensional PAGE in separation of microsomal fractions of frequently used plant species and tissues. J Proteomics 2012; 75:2550-62. [PMID: 22406299 DOI: 10.1016/j.jprot.2012.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/19/2012] [Accepted: 02/17/2012] [Indexed: 11/17/2022]
Abstract
The crucial cellular role of membrane proteins is generally known for all life forms. Depending on the species, tissue, compartment, function and physiological condition, membranes differ in their protein and lipid profiles. Additionally, occurrence of microdomains hampers quantitative protein solubilisation and therefore membrane proteomics remain a major challenge. In the present study sample preparation (TCA/acetone and methanol/chloroform precipitation with and without SDS pre-solubilisation) for two-dimensional PAGE were compared for microsomal fractions of leaves (Arabidopsis thaliana, Nicotiana tabaccum, Pisum sativum) and roots (P. sativum, Zea mays). Generally, pre-solubilisation with SDS impaired the resolution of the gels. All samples showed higher spot yields with TCA/acetone precipitation. Finally, we compared the results of conventional 2D-PAGE (IPG/SDS-PAGE) and the combination of off-gel fractionation in the first-dimension, 10% urea-SDS-PAGE in the second-dimension. Results showed that more spots are present in the alkaline pH range after off-gel fractionation then on conventional 2D-PAGE. For the first time, off-gel fractionation was combined with SDS/SDS-PAGE and BAC/SDS-PAGE to improve the resolution after off-gel fractionation. Transmembrane domains and GRAVY were calculated for all significantly identified spots resulting from the MALDI-TOF-TOF mass spectrometry showing that in the second dimension after off-gel fractionation 10.3% more transmembrane proteins were identified compared to IPG/SDS-PAGE.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Plant Physiology, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | | |
Collapse
|
33
|
Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol 2012; 5:11. [PMID: 22424240 PMCID: PMC3337254 DOI: 10.1186/1756-8722-5-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/18/2012] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Hematology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
34
|
ZHANG PY, LI YZ, WU ZH, LIU H, XU PP, XIONG J. Establishment of Sorangium cellulosum So0157-2 Proteome Database Using Optimized Two-dimensional Electrophoresis Protocol*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics 2011; 10:M111.011213. [PMID: 21808052 DOI: 10.1074/mcp.m111.011213] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-distance transport of mRNAs is crucial in determining spatio-temporal gene expression in eukaryotes. The RNA-binding protein Rrm4 constitutes a key component of microtubule-dependent mRNA transport in filaments of Ustilago maydis. Although a number of potential target mRNAs could be identified, cellular processes that depend on Rrm4-mediated transport remain largely unknown. Here, we used differential proteomics to show that ribosomal, mitochondrial, and cell wall-remodeling proteins, including the bacterial-type endochitinase Cts1, are differentially regulated in rrm4Δ filaments. In vivo UV crosslinking and immunoprecipitation and fluorescence in situ hybridization revealed that cts1 mRNA represents a direct target of Rrm4. Filaments of cts1Δ mutants aggregate in liquid culture suggesting an altered cell surface. In wild type cells Cts1 localizes predominantly at the growth cone, whereas it accumulates at both poles in rrm4Δ filaments. The endochitinase is secreted and associates most likely with the cell wall of filaments. Secretion is drastically impaired in filaments lacking Rrm4 or conventional kinesin Kin1 as well as in filaments with disrupted microtubules. Thus, Rrm4-mediated mRNA transport appears to be essential for efficient export of active Cts1, uncovering a novel molecular link between mRNA transport and the mechanism of secretion.
Collapse
Affiliation(s)
- Janine Koepke
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Belin S, Hacot S, Daudignon L, Therizols G, Pourpe S, Mertani HC, Rosa-Calatrava M, Diaz JJ. Purification of ribosomes from human cell lines. ACTA ACUST UNITED AC 2011; Chapter 3:Unit 3.40. [PMID: 21154551 DOI: 10.1002/0471143030.cb0340s49] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Highly conserved during evolution, the ribosome is the central effector of protein synthesis. In mammalian cells, the ribosome is a macromolecular complex composed of four different ribosomal RNAs (rRNA) and about 80 ribosomal proteins. Requiring more than 200 factors, ribosome biogenesis is a highly complex process that takes place mainly within the nucleoli of eukaryotic cells. Crystallographic data suggest that the ribosome is a ribozyme, in which the rRNA catalyses the peptide bond formation and ensures quality control of the translation. Ribosomal proteins are involved in this molecular mechanism; nonetheless, their role is still not fully characterized. Recent studies suggest that ribosomes themselves and/or the mechanisms underlying their synthesis, processing, and assembly play a key role in the establishment and progression of several human pathologies. The protocol described here is simple, efficient, and robust, and allows one to purify high-quality ribosomes from human cultured cell lines. Ribosomes purified with this protocol are adequate for most of the subsequent analyses of their RNA and protein content.
Collapse
|
37
|
Tissue-type plasminogen activator induces plasmin-dependent proteolysis of intracellular neuronal nitric oxide synthase. Biol Cell 2010; 102:539-47. [PMID: 20636282 DOI: 10.1042/bc20100072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Despite its pro-fibrinolytic activity, tPA (tissue plasminogen activator) is a serine protease known to influence a number of physiological and pathological functions in the central nervous system. Accordingly, tPA was reported to mediate some of its functions in the central nervous system through NMDA (N-methyl-D-aspartate) receptors, LRP (low-density lipoprotein receptor-related protein) or annexin II. RESULTS We provide here both in vitro and in vivo evidence that tPA could mediate proteolysis and subsequent delocalization of neuronal nitric oxide synthase, thereby reducing endogenous neuronal nitric oxide release. We also demonstrate that although this effect is independent of NMDA receptors, LRP signalling and calpain-mediated proteolysis, it is dependent on the ability of tPA to promote the conversion of plasminogen into plasmin. CONCLUSION Altogether, these results demonstrate a new function for tPA in the central nervous system, which most likely contributes to its pleiotropic functions.
Collapse
|
38
|
Pedreschi R, Hertog M, Lilley KS, Nicolaï B. Proteomics for the Food Industry: Opportunities and Challenges. Crit Rev Food Sci Nutr 2010; 50:680-92. [DOI: 10.1080/10408390903044214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Variations on a theme: Changes to electrophoretic separations that can make a difference. J Proteomics 2010; 73:1562-72. [DOI: 10.1016/j.jprot.2010.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/01/2010] [Accepted: 04/03/2010] [Indexed: 11/19/2022]
|
40
|
Cho JH, Cho MH, Hwang H, Bhoo SH, Hahn TR. Improvement of plant protein solubilization and 2-DE gel resolution through optimization of the concentration of Tris in the solubilization buffer. Mol Cells 2010; 29:611-6. [PMID: 20496115 DOI: 10.1007/s10059-010-0076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022] Open
Abstract
It is important to solubilize acetone-precipitated proteins before isoelectric focusing (IEF) to achieve high resolution 2-DE gels. To resolve the maximum possible number of plant protein spots, we developed an improved solubilization buffer for plant proteins. We demonstrated that the resolution of 2-DE gels increased dramatically as the concentration of Tris-base increased, with maximum solubilization obtained at 200 mM Tris-base (Ly200T). The Ly200T buffer was more effective than the commonly used solubilization buffer containing 40 mM Tris at solubilizing acetone-precipitated plant proteins. Use of the Ly200T buffer to solubilize proteins resulted in an increase in intensity of approximately 30% of plant protein spots in the larger-than-40 kDa region of the gel. The Ly200T buffer also improved the resolution of abundant and basic proteins. Thus, the Ly200T buffer can be used to achieve greater resolution of protein spots in plant proteomics research.
Collapse
Affiliation(s)
- Jin-Hwan Cho
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Suwon, 446-701, Korea
| | | | | | | | | |
Collapse
|
41
|
Chevalier F. Highlights on the capacities of "Gel-based" proteomics. Proteome Sci 2010; 8:23. [PMID: 20426826 PMCID: PMC2873371 DOI: 10.1186/1477-5956-8-23] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022] Open
Abstract
Gel-based proteomic is the most popular and versatile method of global protein separation and quantification. This is a mature approach to screen the protein expression at the large scale, and a cheaper approach as compared with gel-free proteomics. Based on two independent biochemical characteristics of proteins, two-dimensional electrophoresis combines isoelectric focusing, which separates proteins according to their isoelectric point, and SDS-PAGE, which separates them further according to their molecular mass. The next typical steps of the flow of gel-based proteomics are spots visualization and evaluation, expression analysis and finally protein identification by mass spectrometry. For the study of differentially expressed proteins, two-dimensional electrophoresis allows simultaneously to detect, quantify and compare up to thousand protein spots isoforms, including post-translational modifications, in the same gel and in a wide range of biological systems. In this review article, the limits, benefits, and perspectives of gel-based proteomic approaches are discussed using concrete examples.
Collapse
|
42
|
|
43
|
Takahashi A, Ikeda TM, Takayama T, Yanagisawa T. A barley Hordoindoline mutation resulted in an increase in grain hardness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:519-526. [PMID: 19826773 DOI: 10.1007/s00122-009-1172-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/27/2009] [Indexed: 05/28/2023]
Abstract
Barley seed proteins, Hordoindolines, are homologues of wheat Puroindolines, which are associated with grain hardness. Barley Hordoindoline genes are known to comprise Hina and Hinb, and Hinb consists of two Hinb genes, Hinb-1 and Hinb-2. Two types of allele were found for Hina, Hinb-1 and Hinb-2 genes, respectively, among Japanese two- and six-rowed barley lines. One of the alleles of Hinb-2 (Hinb-2b) had a frame-shift mutation resulting in an in-frame stop codon. For two-rowed barley lines, grain hardness was significantly higher among lines with the Hinb-2b than those with the wild type Hinb-2 gene (Hinb-2a). Protein spots corresponding to HINa, HINb-1, and HINb-2 were identified by 2D-gel electrophoresis among barley lines with Hinb-2a. Among the lines with Hinb-2b, HINa and HINb-1 were expressed at similar levels as those in the wild type, but HINb-2 was not detected. A DNA (cleaved amplified polymorphic sequence) marker was developed to distinguish between the Hinb-2a and Hinb-2b gene sequences. Analysis of grain hardness among F(2) lines derived from a cross between a line with Hinb-2a (Shikoku hadaka 115) and a line with the Hinb-2b (Shikoku hadaka 84) showed significantly higher grain hardness in the mutant lines. From these results, the Hinb-2b frame-shift (null) mutation might play a critical role in barley grain hardness. The DNA marker will be useful in barley breeding to select lines having harder grain texture.
Collapse
Affiliation(s)
- Asuka Takahashi
- National Agricultural Research Center for Western Region (WeNARC), 1-3-1 Senyu, Zentsuji, Kagawa 765-8508, Japan.
| | | | | | | |
Collapse
|
44
|
Kask L, Larsson K, Bjellqvist B. Elimination of basic gaps at high pH values in 2-DE. Proteomics 2009; 9:5558-61. [DOI: 10.1002/pmic.200900091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Hung CJ, Lee YJ, Chen DH, Li C. Proteomic analysis of methylarginine-containing proteins in HeLa cells by two-dimensional gel electrophoresis and immunoblotting with a methylarginine-specific antibody. Protein J 2009; 28:139-47. [PMID: 19365714 DOI: 10.1007/s10930-009-9174-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein arginine methylation is found in many nucleic acid binding proteins affecting numerous cellular functions. In this study we identified methylarginine-containing proteins in HeLa cell extracts by two-dimensional electrophoresis and immunoblotting with a methylarginine-specific antibody. Protein spots with matched protein stain and blotting signals were analyzed by mass spectrometry. The identities of 12 protein spots as 11 different proteins were suggested. Known methylarginine-containing proteins such as hnRNP A2/B1, hnRNP A1, hnRNP G and FUS were identified, indicating the feasibility of our approach. However, four highly abundant metabolic enzymes that might co-electrophorese with methylarginine-containing proteins were also identified. Other nucleic acid binding proteins hnRNP M, hnRNP I and NonO protein were identified. Recombinant hnRNP M and a peptide with the RGG sequence in hnRNP M could be further methylated in vitro. The immunoblotting results of immunoprecipitated hnRNP I and NonO protein are consistent with arginine methylation in both proteins. In this study we identified methylarginine-containing proteins in HeLa cells through proteomic approaches and the method is fast and robust for further applications.
Collapse
Affiliation(s)
- Chien-Jen Hung
- Department of Biomedical Sciences, Chung Shan Medical University, 110 Sec. 1, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
46
|
Huang Q, Wang L, Bai S, Lin W, Chen W, Lin J, Lin X. Global proteome analysis of hepatitis B virus expressing human hepatoblastoma cell line HepG2. J Med Virol 2009; 81:1539-50. [PMID: 19626621 DOI: 10.1002/jmv.21593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In countries where hepatitis B virus (HBV) is endemic, a high incidence of hepatocellular carcinoma (HCC) occur in HBV carriers and the prolonged replication and expression of HBV proteins in the liver is considered an important risk factor for progression to malignancy. However, the mechanism of pathogenesis of HBV-associated carcinoma remains elusive. In this study, the human hepatoblastoma HepG2 cell line harboring 1.2 x unit-length of the HBV genome was generated and subjected to a proteomic approach analyzing the global protein expression profiles of HepG2 cells with and without HBV replication and protein expression. By using fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), followed by MALDI-TOF-MS and database searching, a total of 50 differentially expressed proteins were identified, including some cell cycle-related proteins. These cycle-related proteins may lead to accumulation of HepG2-HBV cells in the G2/M phase, and an increase in the proportion of HepG2 cells with tripolar or multipolar spindles. This study described the proteomic alterations in HepG2 cells HBV-harboring, which may provide new insights into the underlying molecular mechanisms involved in HBV replication and pathogenesis.
Collapse
Affiliation(s)
- Qingling Huang
- Key Laboratory of Infection and Oncology, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
|
49
|
Two-dimensional electrophoresis: an overview. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 519:1-16. [PMID: 19381573 DOI: 10.1007/978-1-59745-281-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two-dimensional gel electrophoresis (2DE) separates proteins by molecular charge and molecular size. Proteins are first solubilised in a denaturing buffer containing a neutral chaotrope, a zwitterionic or neutral detergent, and a reducing agent. First-dimension isoelectric keywords, focusing, then subjects proteins to a high voltage within a pH gradient. The amphoteric nature of proteins means each migrates to the pH where the net molecular charge is zero. After equilibration, to ensure complete protein unfolding, the second dimension separates by molecular size. Each protein is therefore resolved at a unique isoelectric point/molecular size coordinate. After visualisation by staining proteome changes are revealed by gel image analysis, and protein spots of interest excised and identified by mass spectrometry sequence analysis combined with database comparison. Variations to this procedure include staining or radio-labelling prior to electrophoresis. Although 2DE does have limitations, the most significant being the resolution of membrane and/or hydrophobic proteins, the potential solutions offered by pre-fractionation or adjustments to the electrophoresis regimen mean this technique is likely to remain central to proteomic research.
Collapse
|
50
|
Garcia L, Saraiva Garcia CH, Calábria LK, Costa Nunes da Cruz G, Sánchez Puentes A, Báo SN, Fontes W, Ricart CAO, Salmen Espindola F, Valle de Sousa M. Proteomic Analysis of Honey Bee Brain upon Ontogenetic and Behavioral Development. J Proteome Res 2009; 8:1464-73. [DOI: 10.1021/pr800823r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Liudy Garcia
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos H. Saraiva Garcia
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Luciana Karen Calábria
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel Costa Nunes da Cruz
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Aniel Sánchez Puentes
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Sonia N. Báo
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Wagner Fontes
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos A. O. Ricart
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Foued Salmen Espindola
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Marcelo Valle de Sousa
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|