1
|
Reeves AE, Vilen Z, Fuentecilla TR, Parker CG, Huang ML. Charting the Dynamic Trophoblast Plasma Membrane Identifies LYN As a Functional Regulator of Syncytialization. ACS Chem Biol 2024; 19:2220-2231. [PMID: 39289808 DOI: 10.1021/acschembio.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The differentiation of placental cytotrophoblasts (CTBs) into the syncytiotrophoblast (STB) layer results in a significant remodeling of the plasma membrane proteome. Here, we use a peroxidase-catalyzed proximity labeling strategy to map the dynamic plasma membrane proteomes of CTBs and STBs. Coupled with mass-spectrometry-based proteomics, we identify hundreds of plasma membrane proteins and observe relative changes in protein abundance throughout differentiation, including the upregulation of the plasma-membrane-localized nonreceptor tyrosine kinase LYN. We show that both siRNA-mediated knockdown and small molecule inhibition of LYN kinase function impairs CTB fusion and reduces the expression of syncytialization markers, presenting a function for LYN outside of its canonical role in immunological signaling. Our results demonstrate the use of the proximity labeling platform to discover functional regulators within the plasma membrane and provide new avenues to regulate trophoblast differentiation.
Collapse
Affiliation(s)
- Abigail E Reeves
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Trinity R Fuentecilla
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Christopher G Parker
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
2
|
Madhu, Sharma A, Kaur A, Singh K, Upadhyay SK. Modulation in gene expression and enzyme activity suggested the roles of monodehydroascorbate reductase in development and stress response in bread wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111902. [PMID: 37879539 DOI: 10.1016/j.plantsci.2023.111902] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Monodehydroascorbate reductase (MDHAR) is a crucial enzymatic antioxidant of the ascorbate-glutathione pathway involved in reactive oxygen species scavenging. Herein, we identified 15 TaMDHAR genes in bread wheat. Phylogenetic analysis revealed their clustering into three groups, which are also related to the subcellular localization in the peroxisome matrix, peroxisome membrane, and chloroplast. Each TaMDHAR protein consisted of two conserved domains; Pyr_redox and Pyr_redox_2 of the pyridine nucleotide disulfide oxidoreductase family. The occurrence of diverse groups of cis-regulatory elements in the promoter region and their interaction with numerous transcription factors suggest assorted functions of TaMDHARs in growth and development and in light, phytohormones, and stress responses. Expression analysis in various tissues further revealed their importance in vegetative and reproductive development. In addition, the differential gene expression and enhanced enzyme activity during drought, heat, and salt treatments exposed their role in abiotic stress response. Interaction of MDHARs with various antioxidant enzymes and biochemicals related to the ascorbate-glutathione cycle exposed their synchronized functioning. Interaction with auxin indicated the probability of cross-talk between antioxidants and auxin signaling. The miR168a, miR169, miR172 and others interaction with various TaMDHARs further directed their association with developmental processes and stress responses. The current study provides extensive information about the importance of TaMDHARs, moreover, the precise role of each gene needs to be established in future studies.
Collapse
Affiliation(s)
- Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
3
|
Haider MZ, Sami A, Shafiq M, Anwar W, Ali S, Ali Q, Muhammad S, Manzoor I, Shahid MA, Ali D, Alarifi S. Genome-wide identification and in-silico expression analysis of carotenoid cleavage oxygenases gene family in Oryza sativa (rice) in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1269995. [PMID: 37954992 PMCID: PMC10634354 DOI: 10.3389/fpls.2023.1269995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Rice constitutes a foundational cereal and plays a vital role in the culinary sector. However, the detriments of abiotic stress on rice quality and productivity are noteworthy. Carotenoid cleavage oxygenases (CCO) hold vital importance as they enable the particular breakdown of carotenoids and significantly contribute towards the growth and response to abiotic stress in rice. Due to the insufficient information regarding rice CCOs and their potential role in abiotic stress, their utilization in stress-resistant genetic breeding remains limited. The current research identified 16 CCO genes within the Oryza sativa japonica group. These OsCCO genes can be bifurcated into three categories based on their conserved sequences: NCEDs (9-Cis-epoxycarotenoid dioxygenases), CCDs (Carotenoid cleavage dioxygenases) and CCD-like (Carotenoid cleavage dioxygenases-like). Conserved motifs were found in the OsCCO gene sequence via MEME analysis and multiple sequence alignment. Stress-related cis-elements were detected in the promoter regions of OsCCOs genes, indicating their involvement in stress response. Additionally, the promoters of these genes had various components related to plant light, development, and hormone responsiveness, suggesting they may be responsive to plant hormones and involved in developmental processes. MicroRNAs play a pivotal role in the regulation of these 16 genes, underscoring their significance in rice gene regulation. Transcriptome data analysis suggests a tissue-specific expression pattern for rice CCOs. Only OsNCED6 and OsNCED10 significantly up-regulated during salt stress, as per RNA seq analyses. CCD7 and CCD8 levels were also higher in the CCD group during the inflorescence growth stage. This provides insight into the function of rice CCOs in abiotic stress response and identifies possible genes that could be beneficial for stress-resistant breeding.
Collapse
Affiliation(s)
- Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Waheed Anwar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sajid Ali
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), North Florida Research and Education Center, Quincy, FL, United States
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mohamadi SF, Babaeian Jelodar N, Bagheri N, Nematzadeh G, Hashemipetroudi SH. New insights into comprehensive analysis of magnesium transporter ( MGT) gene family in rice ( Oryza sativa L.). 3 Biotech 2023; 13:322. [PMID: 37649592 PMCID: PMC10462602 DOI: 10.1007/s13205-023-03735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Magnesium transporters (MGTs) regulate magnesium absorption, transport, and redistribution in higher plants. To investigate the role of the Oryza sativa MGTs gene family members under salt stress, this study analyzed the protein properties, gene structure, phylogenetic relationship, synteny patterns, expression, and co-expression networks of 23 non-redundant OsMGT. The evolutionary relationship of the OsMGT gene family was fully consistent with their functional domain, and were divided into three main classes based on the conserved domain: MMgT, CorA-like, and NIPA. The α/β patterns in the protein structures were highly similar in the CorA-like and NIPA members, with the conserved structures in the Mg2+-binding and catalytic regions. The CorA-like clade-related proteins demonstrated the highest numbers of protein channels with Pro, Ser, Lys, Gly, and Tyr, as the critical binding residues. The expression analysis of OsMGT genes in various tissues showed that MGTs' gene family may possess critical functions during rice development. Gene expression analysis of candidate OsMGT using reverse-transcription quantitative real-time PCR (RT-qPCR) found that four OsMGT genes exhibited different expression patterns in salt-sensitive and salt-tolerant rice genotypes. We hypothesize that the OsMGT gene family members may be involved in responses to salt stress. These findings could be useful for further functional investigation of MGTs as well as defining their involvement in abiotic stress studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03735-4.
Collapse
Affiliation(s)
- Seyede Fateme Mohamadi
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Nadali Babaeian Jelodar
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Nadali Bagheri
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Ghorbanali Nematzadeh
- Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, 4818166996 Iran
| | - Seyyed Hamidreza Hashemipetroudi
- Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, 4818166996 Iran
| |
Collapse
|
5
|
Mousseau CB, Pierre CA, Hu DD, Champion MM. Miniprep assisted proteomics (MAP) for rapid proteomics sample preparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:916-924. [PMID: 36373982 PMCID: PMC9933840 DOI: 10.1039/d2ay01549h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 06/14/2023]
Abstract
Complete enzymatic digestion of proteins for bottom-up proteomics is substantially improved by use of detergents for denaturation and solubilization. Detergents however, are incompatible with many proteases and highly detrimental to LC-MS/MS. Recently; filter-based methods have seen wide use due to their capacity to remove detergents and harmful reagents prior to digestion and mass spectrometric analysis. We hypothesized that non-specific protein binding to negatively charged silica-based filters would be enhanced by addition of lyotropic salts, similar to DNA purification. We sought to exploit these interactions and investigate if low-cost DNA purification spin-filters, 'Minipreps,' efficiently and reproducibly bind proteins for digestion and LC-MS/MS analysis. We propose a new method, Miniprep Assisted Proteomics (MAP), for sample preparation. We demonstrate binding capacity, performance, recovery and identification rates for proteins and whole-cell lysates using MAP. MAP recovered equivalent or greater protein yields from 0.5-50 μg analyses benchmarked against commercial trapping preparations. Nano UHPLC-MS/MS proteome profiling of lysates of Escherichia coli had 99.3% overlap vs. existing approaches and reproducibility of replicate minipreps was 98.8% at the 1% FDR protein level. Label Free Quantitative proteomics was performed and 91.2% of quantified proteins had a %CV <20% (2044/2241). Miniprep Assisted Proteomics can be performed in minutes, shows low variability, high recovery and proteome depth. This suggests a significant role for adventitious binding in developing new proteomics sample preparation techniques. MAP represents an efficient, ultra-low-cost alternative for sample preparation in a commercially obtainable device that costs ∼$0.50 (USD) per miniprep.
Collapse
Affiliation(s)
- C Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Camille A Pierre
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Molecular and Functional Characterization of an Anti-lipopolysaccharide Factor Mm-ALF from Speckled Shrimp Metapenaeus monoceros. Probiotics Antimicrob Proteins 2021; 13:1183-1194. [PMID: 33569748 DOI: 10.1007/s12602-021-09741-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides of approximately 100 amino acid residues with a broad spectrum of antimicrobial activity. It is an amphipathic peptide with an N-terminal hydrophobic region and a lipopolysaccharide binding domain (LBD). In the present study, we report an isoform of the anti-lipopolysaccharide factor (Mm-ALF) from the speckled shrimp, Metapenaeus monoceros. A 359 bp cDNA encoded 119 amino acids, and the sequence showed 99.16% similarity to ALF from the shrimp Fenneropenaeus indicus. The mature peptide of 94 amino acids has a net charge of +8, molecular weight 10.62 kDa, and pI 10.11. The mature peptide Mm-ALF was recombinantly expressed in E. coli Rosetta-gami cells, and the peptide was isolated and purified. The rMm-ALF exhibited notable antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli, Edwardsiella tarda, Aeromonas hydrophila, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio alginolyticus, Vibrio proteolyticus, Vibrio cholerae and Vibrio fluvialis) bacteria.
Collapse
|
7
|
Kaur A, Pati PK, Pati AM, Nagpal AK. Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS One 2020; 15:e0239836. [PMID: 32986761 PMCID: PMC7521741 DOI: 10.1371/journal.pone.0239836] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Plants are constantly under the threat of various biotic and abiotic stress conditions and to overcome these stresses, they have evolved multiple mechanisms including systematic accumulation of different phytohormones, phytoalexins and pathogenesis related (PR) proteins. PR proteins are cluster of proteins with low molecular weight which get incited in plants under different stresses. In this paper, in-silico approaches are used to compare the physico-chemical properties of 6 PR proteins (PR1, PR2, PR5, PR9, PR10, PR12) of Arabidopsis thaliana and Oryza sativa. Topological analysis revealed the presence of transmembrane localization of PR2 and absence of transmembrane domain in PR10 of both model plants studied. Amino acid composition shows the dominance of small aliphatic amino acids i.e. alanine, glycine and serine in both plants studied. These results highlights the similarities and differences between PRs of both model plants, which provides clue towards their diversified roles in plants.
Collapse
Affiliation(s)
- Amritpreet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (AKN); (PKP); (AMP)
| | - Aparna Maitra Pati
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- * E-mail: (AKN); (PKP); (AMP)
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (AKN); (PKP); (AMP)
| |
Collapse
|
8
|
A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of this Field. Proteomes 2020; 8:proteomes8030014. [PMID: 32640657 PMCID: PMC7564415 DOI: 10.3390/proteomes8030014] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Proteomics is the field of study that includes the analysis of proteins, from either a basic science prospective or a clinical one. Proteins can be investigated for their abundance, variety of proteoforms due to post-translational modifications (PTMs), and their stable or transient protein–protein interactions. This can be especially beneficial in the clinical setting when studying proteins involved in different diseases and conditions. Here, we aim to describe a bottom-up proteomics workflow from sample preparation to data analysis, including all of its benefits and pitfalls. We also describe potential improvements in this type of proteomics workflow for the future.
Collapse
|
9
|
Kaur G, Pati PK. In silico physicochemical characterization and topology analysis of Respiratory burst oxidase homolog (Rboh) proteins from Arabidopsis and rice. Bioinformation 2018; 14:93-100. [PMID: 29785067 PMCID: PMC5953861 DOI: 10.6026/97320630014093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase (NOX) is a key enzyme involved in the production of apoplastic superoxide (O2-), a type of reactive oxygen species (ROS). Plant Noxes are the homologs of mammalian NADPH oxidase's catalytic subunit and are documented as respiratory burst oxidase homologs (Rbohs). A number of studies have reported their diverse functions in combating various stresses and in plant growth and development. In the present study, a total of 19 Rboh proteins (10 from Arabidopsis thaliana and 9 from Oryza sativa Japonica) were analyzed. We employed in silico approaches to compute the physiochemical properties (molecular weight, isoelectric point, total number of negatively and positively charged residues, extinction coefficient, half-life, instability and aliphatic index, grand average of hydropathicity, amino acid percentage). We observed a lot of variability in these parameters among the Rbohs accounting for their functional diversification. Their topological analysis, subcellular localization and signal peptide detection are also performed. To the best of our knowledge, the present study report on in silico physiochemical characterization, topology analysis, subcellular localization and signal peptide detection of Rboh proteins within two model plants. The study elucidates the variations in the key properties among Rbohs proteins, which may be responsible for their functional multiplicity.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| |
Collapse
|
10
|
Thomas A, Lenglet S, Chaurand P, Déglon J, Mangin P, Mach F, Steffens S, Wolfender JL, Staub C. Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 2017; 106:20-33. [DOI: 10.1160/th10-12-0812] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 01/05/2023]
Abstract
SummaryThe identification and quantification of proteins and lipids is of major importance for the diagnosis, prognosis and understanding of the molecular mechanisms involved in disease development. Owing to its selectivity and sensitivity, mass spectrometry has become a key technique in analytical platforms for proteomic and lipidomic investigations. Using this technique, many strategies have been developed based on unbiased or targeted approaches to highlight or monitor molecules of interest from biomatrices. Although these approaches have largely been employed in cancer research, this type of investigation has been met by a growing interest in the field of cardiovascular disorders, potentially leading to the discovery of novel biomarkers and the development of new therapies. In this paper, we will review the different mass spectrometry- based proteomic and lipidomic strategies applied in cardiovascular diseases, especially atherosclerosis. Particular attention will be given to recent developments and the role of bioinformatics in data treatment. This review will be of broad interest to the medical community by providing a tutorial of how mass spectrometric strategies can support clinical trials.
Collapse
|
11
|
Gao L, Wang J, Ge H, Fang L, Zhang Y, Huang X, Wang Y. Toward the complete proteome of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:203-219. [PMID: 25862646 DOI: 10.1007/s11120-015-0140-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the photosynthetic model organism Synechocystis sp. PCC 6803 has been extensively analyzed in the last 15 years for the purpose of identifying proteins specifically expressed in subcellular compartments or differentially expressed in different environmental or internal conditions. This review summarizes the progress achieved so far with the emphasis on the impact of different techniques, both in sample preparation and protein identification, on the increasing coverage of proteome identification. In addition, this review evaluates the current completeness of proteome identification, and provides insights on the potential factors that could affect the complete identification of the Synechocystis proteome.
Collapse
Affiliation(s)
- Liyan Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Haitao Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
12
|
A Review: Proteomics in Nasopharyngeal Carcinoma. Int J Mol Sci 2015; 16:15497-530. [PMID: 26184160 PMCID: PMC4519910 DOI: 10.3390/ijms160715497] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
Although radiotherapy is generally effective in the treatment of major nasopharyngeal carcinoma (NPC), this treatment still makes approximately 20% of patients radioresistant. Therefore, the identification of blood or biopsy biomarkers that can predict the treatment response to radioresistance and that can diagnosis early stages of NPC would be highly useful to improve this situation. Proteomics is widely used in NPC for searching biomarkers and comparing differentially expressed proteins. In this review, an overview of proteomics with different samples related to NPC and common proteomics methods was made. In conclusion, identical proteins are sorted as follows: Keratin is ranked the highest followed by such proteins as annexin, heat shock protein, 14-3-3σ, nm-23 protein, cathepsin, heterogeneous nuclear ribonucleoproteins, enolase, triosephosphate isomerase, stathmin, prohibitin, and vimentin. This ranking indicates that these proteins may be NPC-related proteins and have potential value for further studies.
Collapse
|
13
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Musunuri S, Kultima K, Richard BC, Ingelsson M, Lannfelt L, Bergquist J, Shevchenko G. Micellar extraction possesses a new advantage for the analysis of Alzheimer's disease brain proteome. Anal Bioanal Chem 2014; 407:1041-57. [PMID: 25416231 DOI: 10.1007/s00216-014-8320-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
Integral membrane proteins (MPs), such as transporters, receptors, and ion channels, are of great interest because of their participation in various vital cellular functions including cell-cell interactions, ion transport, and signal transduction. However, studies of MPs are complicated because of their hydrophobic nature, heterogeneity, and low abundance. Cloud-point extraction (CPE) with the non-ionic surfactant Triton X-114 was performed to simultaneously extract and phase separate hydrophobic and hydrophilic proteins from Alzheimer's disease (AD) and unaffected control brain tissue. Quantitative proteomics analysis of temporal neocortex samples of AD patients and controls was performed using a shotgun approach based on stable isotope dimethyl labeling (DML) quantification technique followed by nanoLC-MS/MS analysis. A total of 1096 unique proteins were identified and quantified, with 40.3 % (211/524) predicted as integral MPs with at least one transmembrane domain (TMD) found in the detergent phase, and 10 % (80/798) in the detergent-depleted phase. Among these, 62 proteins were shown to be significantly altered (p-value <0.05), in AD versus control samples. In the detergent fraction, we found 10 hydrophobic transmembrane proteins containing up to 14 putative TMDs that were significantly up- or down-regulated in AD compared with control brains. Changes in four of these proteins, alpha-enolase (ENOA), lysosome-associated membrane glycoprotein 1 (LAMP1), 14-3-3 protein gamma (1433G), and sarcoplasmic/endoplasmic reticulum calcium ATPase2 (AT2A2) were validated by immunoblotting. Our results emphasize that separating hydrophobic MPs in CPE contributes to an increased understanding of the underlying molecular mechanisms in AD. Such knowledge can become useful for the development of novel disease biomarkers.
Collapse
Affiliation(s)
- Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014; 29:32-58. [DOI: 10.1016/j.rbmo.2014.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
|
17
|
Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, Lokamani I, Yaoita E, Yamamoto T. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin Proteomics 2014; 11:16. [PMID: 24735559 PMCID: PMC3996944 DOI: 10.1186/1559-0275-11-16] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/20/2014] [Indexed: 12/19/2022] Open
Abstract
Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications.
Collapse
Affiliation(s)
- Sameh Magdeldin
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan.,Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shymaa Enany
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Bo Xu
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Ying Zhang
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | | | | | - Eishin Yaoita
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Tadashi Yamamoto
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| |
Collapse
|
18
|
François P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approach to investigate pathogenicity and metabolism of methicillin-resistant Staphylococcus aureus. Methods Mol Biol 2014; 1085:231-50. [PMID: 24085700 DOI: 10.1007/978-1-62703-664-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last two decades, numerous genomes of pathogenic bacteria have been fully sequenced and annotated, while others are continuously being sequenced. To date, the sequences of more than 8,500 whole bacterial genomes are publicly available for research purposes. These efforts in high-throughput sequencing simultaneously to progresses in methods allowing to study whole transcriptome and proteome of bacteria provide the basis of comprehensive understanding of metabolism, adaptability to environment, regulation, resistance pathways, or pathogenicity mechanisms of bacterial pathogens. Staphylococcus aureus is a Gram-positive human pathogen causing a wide variety of infections ranging from benign skin infection to life-threatening diseases. Furthermore, the spreading of multidrug-resistant isolates requiring the use of last barrier drugs has resulted in a particular attention of the medical and scientific community to this pathogen. We describe here proteomic methods to prepare, identify, and analyze protein fractions, which allow studying Staphylococcus aureus on the organism level. Besides evaluation of the whole bacterial transcriptome, this approach might contribute to the development of rapid diagnostic tests and to the identification of new drug targets to improve public health.
Collapse
Affiliation(s)
- Patrice François
- Service of Infectious Diseases, Genomic Research Laboratory, Geneva, Switzerland
| | | | | | | |
Collapse
|
19
|
Madeira A, dos Santos SC, Santos PM, Coutinho CP, Tyrrell J, McClean S, Callaghan M, Sá-Correia I. Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection. PLoS One 2013; 8:e83065. [PMID: 24349432 PMCID: PMC3862766 DOI: 10.1371/journal.pone.0083065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient’s death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.
Collapse
Affiliation(s)
- Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M. Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jean Tyrrell
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
20
|
Gene expression profiling of Pseudomonas putida F1 after exposure to aromatic hydrocarbon in soil by using proteome analysis. Arch Microbiol 2013; 195:805-13. [DOI: 10.1007/s00203-013-0932-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
|
21
|
Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets. J Proteomics 2013; 84:61-77. [PMID: 23568020 DOI: 10.1016/j.jprot.2013.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the involvement of PPAR mediated signalling is provided linking the different metabolic effects. The global and systematic viewpoint of this study compiles many of the known phenomena related to the effects of fish oil and fatty acids giving a solid foundation for further exploratory and more directed studies of the mechanisms behind the beneficial and detrimental effects of fish oil and TTA diet supplementation. This work is already a second article in a series of studies conducted using this model of dietary intervention. In the previous study (Vigerust et al., [21]) the effects of fish oil and TTA on the plasma lipids and cholesterol levels as well as key metabolic enzymes in the liver have been studied. In an ongoing study more work is being done to explore in detail for example the link between the down regulation of the components of the respiratory chain (observed in this study) and the strong antioxidant effects of TTA. The reference diet in this study has been designed to mimic an unhealthy - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some of the symptoms of the metabolic syndrome. To date very little is known about the molecular mechanisms behind these beneficial effects and the potential pitfalls of the consumption of those two compounds. Only studies of each compound separately and using only small scale molecular biology approaches have been carried out. The results of this work provide an excellent starting point for further studies that will help to understand the metabolic effects of fish oil and TTA and will hopefully help to design dietary programs directed towards reduction of the prevalence of metabolic syndrome and associated diseases.
Collapse
|
22
|
HE PENGCHENG, LIU YANFENG, ZHANG MEI, WANG XIAONING, WANG HUAIYU, XI JIEYING, WEI KAIHUA, WANG HONGLI, ZHAO JING. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4. Mol Med Rep 2012; 6:570-4. [DOI: 10.3892/mmr.2012.963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/11/2012] [Indexed: 11/06/2022] Open
|
23
|
Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell 2012; 3:346-63. [PMID: 22610887 DOI: 10.1007/s13238-012-2034-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/22/2012] [Indexed: 02/01/2023] Open
Abstract
Two-dimensional gel electrophoresis (2-DE) is a gel-based technique widely used for analyzing the protein composition of biological samples. It is capable of resolving complex mixtures containing more than a thousand protein components into individual protein spots through the coupling of two orthogonal biophysical separation techniques: isoelectric focusing (first dimension) and polyacrylamide gel electrophoresis (second dimension). 2-DE is ideally suited for analyzing the entire expressed protein complement of a bacterial cell: its proteome. Its relative simplicity and good reproducibility have led to 2-DE being widely used for exploring proteomics within a wide range of environmental and medically-relevant bacteria. Here we give a broad overview of the basic principles and historical development of gel-based proteomics, and how this powerful approach can be applied for studying bacterial biology and physiology. We highlight specific 2-DE applications that can be used to analyze when, where and how much proteins are expressed. The links between proteomics, genomics and mass spectrometry are discussed. We explore how proteomics involving tandem mass spectrometry can be used to analyze (post-translational) protein modifications or to identify proteins of unknown origin by de novo peptide sequencing. The use of proteome fractionation techniques and non-gel-based proteomic approaches are also discussed. We highlight how the analysis of proteins secreted by bacterial cells (secretomes or exoproteomes) can be used to study infection processes or the immune response. This review is aimed at non-specialists who wish to gain a concise, comprehensive and contemporary overview of the nature and applications of bacterial proteomics.
Collapse
|
24
|
Michalik S, Bernhardt J, Otto A, Moche M, Becher D, Meyer H, Lalk M, Schurmann C, Schlüter R, Kock H, Gerth U, Hecker M. Life and death of proteins: a case study of glucose-starved Staphylococcus aureus. Mol Cell Proteomics 2012; 11:558-70. [PMID: 22556279 DOI: 10.1074/mcp.m112.017004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis.
Collapse
Affiliation(s)
- Stephan Michalik
- Institute of Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mitochondrial proteomic approaches for new potential diagnostic and prognostic biomarkers in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:423-40. [PMID: 22399434 DOI: 10.1007/978-94-007-2869-1_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction and mutations in mitochondrial DNA have been implicated in a wide variety of human diseases, including cancer. In recent years, considerable advances in genomic, proteomic and bioinformatic technologies have made it possible the analysis of mitochondrial proteome, leading to the identification of over 1,000 proteins which have been assigned unambiguously to mitochondria. Defining the mitochondrial proteome is a fundamental step for fully understanding the organelle functions as well as mechanisms underlying mitochondrial pathology. In fact, besides giving information on mitochondrial physiology, by characterizing all the components of this subcellular organelle, the application of proteomic technologies permitted now to study the proteins involved in many crucial properties in cell signaling, cell differentiation and cell death and, in particular, to identify mitochondrial proteins that are aberrantly expressed in cancer cells. An improved understanding of the mitochondrial proteome could be essential to shed light on the connection between mitochondrial dysfunction, deregulation of apoptosis and tumorigenesis and to discovery new therapeutic targets for mitochondria-related diseases.
Collapse
|
26
|
Cao Y, Johnson HM, Bazemore-Walker CR. Improved enrichment and proteomic identification of outer membrane proteins from a Gram-negative bacterium: Focus on Caulobacter crescentus. Proteomics 2011; 12:251-62. [DOI: 10.1002/pmic.201100288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/16/2011] [Accepted: 11/02/2011] [Indexed: 01/12/2023]
|
27
|
Zhang T, Gai Q, Qu F, Zhang Y. Ionic liquid-assisted SDS-PAGE to improve human serum protein separation. Electrophoresis 2011; 32:2904-10. [DOI: 10.1002/elps.201100184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022]
|
28
|
Nginamau ES, Maehle BO, Jonsson R. An experimental protocol for the fractionation and 2DE separation of HeLa and A-253 cell lysates suitable for the identification of the individual antigenic proteome in Sjögren's syndrome. Autoimmunity 2011; 44:652-63. [PMID: 21875379 DOI: 10.3109/08916934.2011.593598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease affecting exocrine glands, especially the salivary and lacrimal glands. Although most of the SS patients' sera have autoantibodies that can target a variety of antigens, it is not clear what determines which proteins will become autoantigens. The muscarinic receptor M3, an integral plasma membrane protein, has been proposed as a possible autoantigen in SS, and is endogenous in HeLa cells. The aim of this study was to develop a method that is able to separate and identify antigens recognised by sera from SS patients using lysates of HeLa and A-253 cells in 2D Western Blot (2DWB). The HeLa and A-253 cell lysates were fractionated in soluble and membrane-bound proteins, and the membrane-bound proteins were enriched for integral proteins. The fractions were tested using WB, confirming the presence of the main cell compartments. The rehydration solution containing ASB-14 performed better than the others in all three steps (active rehydration, focus and transfer), and efficiently separated the muscarinic receptor M3. The M3 receptor was also detected in lysates from A-253 cells. The presence of this receptor in this cell line has not been proven earlier. This work develops a suitable protocol to perform a mapping of the autoantibodies present in the sera of single SS patients, using lysates from epithelial cell lines that represent the main cell compartments as an antigen source. It is our future aim to use this protocol to perform a mapping of the antibodies present in the sera of individual SS patients.
Collapse
|
29
|
Mathias RA, Chen YS, Kapp EA, Greening DW, Mathivanan S, Simpson RJ. Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins. Methods 2011; 54:396-406. [DOI: 10.1016/j.ymeth.2011.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022] Open
|
30
|
Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics 2011; 74:1829-41. [PMID: 21669304 DOI: 10.1016/j.jprot.2011.05.040] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 12/12/2022]
Abstract
Two-dimensional electrophoresis of proteins has preceded, and accompanied, the birth of proteomics. Although it is no longer the only experimental scheme used in modern proteomics, it still has distinct features and advantages. The purpose of this tutorial paper is to guide the reader through the history of the field, then through the main steps of the process, from sample preparation to in-gel detection of proteins, commenting the constraints and caveats of the technique. Then the limitations and positive features of two-dimensional electrophoresis are discussed (e.g. its unique ability to separate complete proteins and its easy interfacing with immunoblotting techniques), so that the optimal type of applications of this technique in current and future proteomics can be perceived. This is illustrated by a detailed example taken from the literature and commented in detail. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 2).
Collapse
|
31
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
32
|
Han MJ, Yun H, Lee JW, Lee YH, Lee SY, Yoo JS, Kim JY, Kim JF, Hur CG. Genome-wide identification of the subcellular localization of the Escherichia coli
B proteome using experimental and computational methods. Proteomics 2011; 11:1213-27. [DOI: 10.1002/pmic.201000191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 11/29/2010] [Accepted: 12/13/2010] [Indexed: 11/09/2022]
|
33
|
Getie-Kebtie M, Lazarev A, Eichelberger M, Alterman M. Label-free mass spectrometry-based relative quantification of proteins separated by one-dimensional gel electrophoresis. Anal Biochem 2011; 409:202-12. [DOI: 10.1016/j.ab.2010.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 02/04/2023]
|
34
|
Teutschbein J, Albrecht D, Pötsch M, Guthke R, Aimanianda V, Clavaud C, Latgé JP, Brakhage AA, Kniemeyer O. Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J Proteome Res 2010; 9:3427-42. [PMID: 20507060 DOI: 10.1021/pr9010684] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aspergillus fumigatus is a ubiquitously distributed filamentous fungus that has emerged as one of the most serious life-threatening pathogens in immunocompromised patients. The mechanisms for its pathogenicity are poorly understood. Here, we analyzed the proteome of dormant A. fumigatus conidia as the fungal entity having the initial contact with the host. Applying two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we established a 2-D reference map of conidial proteins. By MALDI-TOF mass spectrometry, we identified a total number of 449 different proteins. We show that 57 proteins of our map are over-represented in resting conidia compared to mycelium. Enzymes involved in reactive oxygen intermediates (ROI) detoxification, pigment biosynthesis, and conidial rodlet layer formation were highly abundant in A. fumigatus spores and most probably account for their enormous stress resistance. Interestingly, pyruvate decarboxylase and alcohol dehydrogenase were detectable in dormant conidia, suggesting that alcoholic fermentation plays a role during dormancy or early germination. Moreover, we show that enzymes for rapid reactivation of protein biosynthesis and metabolic processes are preserved in resting conidia, which therefore feature the potential to immediately respond to an environmental stimulus by germination. The generated data lay the foundations for further proteomic analyses and a better understanding of fungal pathogenesis.
Collapse
Affiliation(s)
- Janka Teutschbein
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goplen D, Bougnaud S, Rajcevic U, Bøe SO, Skaftnesmo KO, Voges J, Enger PØ, Wang J, Tysnes BB, Laerum OD, Niclou S, Bjerkvig R. αB-crystallin is elevated in highly infiltrative apoptosis-resistant glioblastoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1618-28. [PMID: 20813964 DOI: 10.2353/ajpath.2010.090063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously established two distinct glioma phenotypes by serial xenotransplantation of human glioblastoma (GBM) biopsies in nude rats. These tumors undergo a gradual transition from a highly invasive nonangiogenic to a less-invasive angiogenic phenotype. In a protein screen to identify molecular markers associated with the infiltrative phenotype, we identified α-basic-crystallin (αBc), a small heat-shock protein with cytoprotective properties. Its increased expression in the infiltrative phenotype was validated by immunohistochemistry and Western blots, confirming its identity to be tumor-derived and not from the host. Stereotactic human GBM biopsies taken from MRI-defined areas verified stronger αBc expression in the infiltrative edge compared to the tumor core. Cell migration assays and immunofluorescence staining showed αBc to be expressed by migrating cells in vitro. To determine αBc function, we altered its expression levels. αBc siRNA depletion caused a loss of migrating tumor cells from biopsy spheroids and delayed monolayer wound closure. In contrast, glioma cell migration in a Boyden chamber assay was unaffected by either αBc knockdown or overexpression, indicating that αBc is not functionally linked to the cell migration machinery. However, after siRNA αBc depletion, a significant sensitization of cells to various apoptotic inducers was observed (actinomycin, tumor necrosis factor α, and TNF-related apoptosis-inducing ligand [TRAIL]). In conclusion, αBc is overexpressed by highly migratory glioma cells where it plays a functional role in apoptosis resistance.
Collapse
Affiliation(s)
- Dorota Goplen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Two-dimensional gel electrophoresis in proteomics: Past, present and future. J Proteomics 2010; 73:2064-77. [PMID: 20685252 DOI: 10.1016/j.jprot.2010.05.016] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 12/14/2022]
Abstract
Two-dimensional gel electrophoresis has been instrumental in the birth and developments of proteomics, although it is no longer the exclusive separation tool used in the field of proteomics. In this review, a historical perspective is made, starting from the days where two-dimensional gels were used and the word proteomics did not even exist. The events that have led to the birth of proteomics are also recalled, ending with a description of the now well-known limitations of two-dimensional gels in proteomics. However, the often-underestimated advantages of two-dimensional gels are also underlined, leading to a description of how and when to use two-dimensional gels for the best in a proteomics approach. Taking support of these advantages (robustness, resolution, and ability to separate entire, intact proteins), possible future applications of this technique in proteomics are also mentioned.
Collapse
|
37
|
Abstract
Marc Wilkins completed his undergraduate and doctoral studies at Macquarie University, Sydney, Australia. During his doctoral studies, he defined the concept of the proteome and coined the term. After postdoctoral studies in Geneva, Switzerland, during which he co-edited the first book on proteomics, he returned to Australia, where he cofounded the company Proteome Systems. More recently, Marc took a position as Professor of Systems Biology at the University of New South Wales. He has established and directs the NSW Systems Biology Initiative, and is currently researching the role that protein post-translational modifications play in the regulation of protein-interaction networks.
Collapse
|
38
|
Okoli AS, Wilkins MR, Raftery MJ, Mendz GL. Response of Helicobacter hepaticus to Bovine Bile. J Proteome Res 2010; 9:1374-84. [DOI: 10.1021/pr900915f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Arinze S. Okoli
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| | - Marc R. Wilkins
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| | - Mark J. Raftery
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| | - George L. Mendz
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| |
Collapse
|
39
|
Moxon JV, Padula MP, Herbert BR, Golledge J. Challenges, current status and future perspectives of proteomics in improving understanding, diagnosis and treatment of vascular disease. Eur J Vasc Endovasc Surg 2009; 38:346-55. [PMID: 19541510 PMCID: PMC2727576 DOI: 10.1016/j.ejvs.2009.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/11/2009] [Indexed: 01/21/2023]
Abstract
Technical advances have seen the rapid adoption of genomics and multiplex genetic polymorphism identification to research on vascular diseases. The utilization of proteomics for the study of vascular diseases has been limited by comparison. In this review we outline currently available proteomics techniques, the challenges to using these approaches and modifications which may improve the utilization of proteomics in the study of vascular diseases.
Collapse
Affiliation(s)
- Joseph V. Moxon
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Matthew P. Padula
- Proteomics Technology Centre of Expertise, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Ben R. Herbert
- Proteomics Technology Centre of Expertise, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Jonathan Golledge
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
40
|
Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M. Power and limitations of electrophoretic separations in proteomics strategies. MASS SPECTROMETRY REVIEWS 2009; 28:816-843. [PMID: 19072760 DOI: 10.1002/mas.20204] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry (i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed.
Collapse
|
41
|
Wilkins MR. Hares and tortoises: the high- versus low-throughput proteomic race. Electrophoresis 2009; 30 Suppl 1:S150-5. [PMID: 19441020 DOI: 10.1002/elps.200900175] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The analysis of the proteome can be undertaken with parallel, high-throughput techniques or those that analyze proteins in a serial, one-at-a-time manner. The former include 2-D gels and shotgun MS/MS; the latter includes libraries containing fusion proteins (GST, green fluorescent protein, TAP-tag and others) that are engineered onto each protein in a proteome and then studied one by one. In this review, we explore the progress that these scientifically contrasting paradigms have made in measuring protein abundance, half-life, post-translational modifications, localization in cells and tissues and in protein membership of complexes, pathways and networks. We find that our understanding of the yeast proteome has been furthered more substantially by the slower "tortoise techniques" than the "high-throughput hares". A number of aspects of the human proteome are also likely to be elucidated most accurately with low-throughput approaches. However, the high-throughput techniques are expected to remain crucial for comparative analyses and most studies of proteome dynamics. This review also briefly explores how electrophoretic separations can continue to support the field of proteomics.
Collapse
Affiliation(s)
- Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Huang KY, Filarsky M, Padula MP, Raftery MJ, Herbert BR, Wilkins MR. Micropreparative fractionation of the complexome by blue native continuous elution electrophoresis. Proteomics 2009; 9:2494-502. [PMID: 19343713 DOI: 10.1002/pmic.200800525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The large-scale analysis of protein complexes is an emerging challenge in the field of proteomics. Currently, there are few methods available for the fractionation of protein complexes that are compatible with downstream proteomic techniques. Here, we describe the technique of blue native continuous elution electrophoresis (BN-CEE). It combines the features of blue native PAGE (BN-PAGE) and continuous elution electrophoresis (CEE), generating liquid-phase fractions of protein complexes of up to 800 kDa. The resulting complexes can be further analysed by BN-PAGE, by SDS-PAGE and/or by MS. This can help define the constituent proteins of many complexes and their stoichiometry. As BN-CEE is also micropreparative, with a capacity to separate milligram quantities of protein complexes, it will assist the study of proteins of lower abundance. In this regard, the acrylamide concentration and elution rate during separation can be controlled to help 'zoom in' on particular high mass regions and thus complexes of interest. We illustrate the utility of the technique in the analysis of Saccharomyces cerevisiae cellular lysate.
Collapse
Affiliation(s)
- Kuan Yen Huang
- Systems Biology Initiative, University of New South Wales, NSW, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Eberhardt C, Engelmann S, Kusch H, Albrecht D, Hecker M, Autenrieth IB, Kempf VAJ. Proteomic analysis of the bacterial pathogen Bartonella henselae and identification of immunogenic proteins for serodiagnosis. Proteomics 2009; 9:1967-81. [PMID: 19333998 DOI: 10.1002/pmic.200700670] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bartonella henselae is a slow growing, fastidious and facultative intracellular pathogen causing cat scratch disease and vasculoproliferative disorders. To date, knowledge about the pathogenicity of this human pathogenic bacterium is limited and, additionally, serodiagnosis still needs further improvement. Here, we investigated the proteome of B. henselae using 2-D SDS-PAGE and MALDI-TOF-MS. We provide a comprehensive 2-D proteome reference map of the whole cell lysate of B. henselae with 431 identified protein spots representing 191 different proteins of which 16 were formerly assigned as hypothetical proteins. To unravel immunoreactive antigens, we applied 2-D SDS-PAGE and subsequent immunoblotting using 33 sera of patients suffering from B. henselae infections. The analysis revealed 79 immunoreactive proteins of which 71 were identified. Setting a threshold of 20% seroreactivity, 11 proteins turned out to be immunodominant antigens potentially useful for an improved Bartonella-specific serodiagnosis. Therefore, we provide for the first time (i) a comprehensive 2-D proteome map of B. henselae for further proteome-based studies focussed on the pathogenicity of B. henselae and (ii) an integrated view into the humoral immune responses targeted against this newly emerged human pathogenic bacterium.
Collapse
Affiliation(s)
- Christian Eberhardt
- Institut für Medizinische Mikrobiologie und Hygiene, Klinikum der Eberhard-Karls-Universität, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Lin Y, Chen Y, Yang X, Xu D, Liang S. Proteome analysis of a single zebrafish embryo using three different digestion strategies coupled with liquid chromatography-tandem mass spectrometry. Anal Biochem 2009; 394:177-85. [PMID: 19643073 DOI: 10.1016/j.ab.2009.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/19/2009] [Accepted: 07/23/2009] [Indexed: 11/28/2022]
Abstract
Zebrafish is a powerful model to analyze vertebrate embryogenesis and organ development. Although a number of genes have been identified to specify embryonic development processes, only a few large-scale proteomic analyses have been reported in regard to these events to date. Here the total proteins of a single embryo were analyzed by urea-, sodium deoxycholate (SDC)-, and performic acid (PA)-assisted trypsin digestion strategies coupled to capillary liquid chromatography-tandem mass spectrometry (CapLC-MS/MS) identification. In total, 509 and 210 proteins were detected from the embryos at 72 and 120 hours postfertilization (hpf), respectively, with a false identification rate of less than 1%. Approximately 95% of those proteins could be observed by combining the urea- and SDC-assisted digestion strategies, suggesting that these two methods are more effective than the PA-assisted method. Compared with 0.5% SDC, 1% SDC was more effective to identify proteins in zebrafish embryos. In addition, removal of the predominant yolk proteins could significantly improve protein identification efficiency. Our study represents the first overview of the protein expression profile of a single zebrafish embryo at 72 or 120 hpf. More important, this single individual proteome methodology could be applied to multiple development stages of wide-type or mutant embryos, providing a simple and powerful way to further our understanding of embryonic development.
Collapse
Affiliation(s)
- Ying Lin
- College of Life Science, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Rabilloud T. Membrane proteins and proteomics: Love is possible, but so difficult. Electrophoresis 2009; 30 Suppl 1:S174-80. [DOI: 10.1002/elps.200900050] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Wang Y, Xu W, Chitnis PR. Identification and bioinformatic analysis of the membrane proteins of synechocystis sp. PCC 6803. Proteome Sci 2009; 7:11. [PMID: 19320970 PMCID: PMC2666656 DOI: 10.1186/1477-5956-7-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 03/25/2009] [Indexed: 01/13/2023] Open
Abstract
Background The membranes of Synechocystis sp. PCC 6803 play a central role in photosynthesis, respiration and other important metabolic pathways. Comprehensive identification of the membrane proteins is of importance for a better understanding of the diverse functions of its unique membrane structures. Up to date, approximately 900 known or predicted membrane proteins, consisting 24.5% of Synechocystis sp. PCC 6803 proteome, have been indentified by large-scale proteomic studies. Results To resolve more membrane proteins on 2-D gels for mass spectrometry identification, we separated integral proteins from membrane associated proteins and collected them as the integral and peripheral fractions, respectively. In total, 95 proteins in the peripheral fraction and 29 proteins in the integral fraction were identified, including the 5 unique proteins that were not identified by any previous studies. Bioinformatic analysis revealed that the identified proteins can be functionally classified into 14 distinct groups according to the cellular functions annotated by Cyanobase, including the two largest groups hypothetical and unknown, and photosynthesis and respiration. Homology analysis indicates that the identified membrane proteins are more conserved than the rest of the proteome. Conclusion The proteins identified in this study combined with other published proteomic data provide the most comprehensive Synechocystis proteome catalog, which will serve as a useful reference for further detailed studies to address protein functions through both traditional gene-by-gene and systems biology approaches.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|
48
|
Vödisch M, Albrecht D, Leßing F, Schmidt AD, Winkler R, Guthke R, Brakhage AA, Kniemeyer O. Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics 2009; 9:1407-15. [DOI: 10.1002/pmic.200800394] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Hahne H, Wolff S, Hecker M, Becher D. From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 2009; 8:4123-36. [PMID: 18763711 DOI: 10.1002/pmic.200800258] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The analysis of integral membrane proteins (IMPs) with mass spectrometry-centered technologies has undergone great progress during the past few years, allowing for the analysis of several hundreds of IMPs. In this study, we investigated three promising shotgun approaches for the identification of IMPs of the model organism Bacillus subtilis. One comprises a classical membrane preparation procedure with carbonate and high-ionic-strength buffers, followed by SDS-PAGE and LC-MS/MS analysis. The two others are based on enzymatic trimming of the crude membrane fraction either with trypsin or proteinase K and subsequent gel-free analysis. As a result, we observed the highest degree of complementarity between the gel-based and the proteinase K approach, since the first exclusively addresses soluble loops and domains of IMPs and gave rise to 8709 unique peptides, whereas the latter contributed 1180 unique peptide identifications from otherwise inaccessible transmembrane helices (TMHs). All three methods contribute significant numbers (381, 284, and 276, respectively) to the total of 527 IMP identifications from the membrane fraction of exponentially growing B. subtilis cells, thus representing approximately 69% of all transcribed IMPs.
Collapse
Affiliation(s)
- Hannes Hahne
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | |
Collapse
|
50
|
Lu B, McClatchy DB, Kim JY, Yates JR. Strategies for shotgun identification of integral membrane proteins by tandem mass spectrometry. Proteomics 2009; 8:3947-55. [PMID: 18780349 DOI: 10.1002/pmic.200800120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Integral membrane proteins (IMPs) are difficult to identify, mainly for two reasons: the hydrophobicity of IMPs and their low abundance. Sample preparation is a key component in the large-scale identification of IMPs. In this review, we survey strategies for shotgun identification of IMPs by MS/MS. We will discuss enrichment, solubilization, separation, and digestion of IMPs, and data analysis for membrane proteomics.
Collapse
Affiliation(s)
- Bingwen Lu
- Department of Chemical Physiology, SR-11, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|