1
|
Chu R, Lim H, Brumfield L, Liu H, Herring C, Ulintz P, Reddy JK, Davison M. Protein profiling of mouse livers with peroxisome proliferator-activated receptor alpha activation. Mol Cell Biol 2004; 24:6288-97. [PMID: 15226431 PMCID: PMC434239 DOI: 10.1128/mcb.24.14.6288-6297.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is important in the induction of cell-specific pleiotropic responses, including the development of liver tumors, when it is chronically activated by structurally diverse synthetic ligands such as Wy-14,643 or by unmetabolized endogenous ligands resulting from the disruption of the gene encoding acyl coenzyme A (CoA) oxidase (AOX). Alterations in gene expression patterns in livers with PPARalpha activation were delineated by using a proteomic approach to analyze liver proteins of Wy-14,643-treated and AOX(-/-) mice. We identified 46 differentially expressed proteins in mouse livers with PPARalpha activation. Up-regulated proteins, including acetyl-CoA acetyltransferase, farnesyl pyrophosphate synthase, and carnitine O-octanoyltransferase, are involved in fatty acid metabolism, whereas down-regulated proteins, including ketohexokinase, formiminotransferase-cyclodeaminase, fructose-bisphosphatase aldolase B, sarcosine dehydrogenase, and cysteine sulfinic acid decarboxylase, are involved in carbohydrate and amino acid metabolism. Among stress response and xenobiotic metabolism proteins, selenium-binding protein 2 and catalase showed a dramatic approximately 18-fold decrease in expression and a modest approximately 6-fold increase in expression, respectively. In addition, glycine N-methyltransferase, pyrophosphate phosphohydrolase, and protein phosphatase 1D were down-regulated with PPARalpha activation. These observations establish proteomic profiles reflecting a common and predictable pattern of differential protein expression in livers with PPARalpha activation. We conclude that livers with PPARalpha activation are transcriptionally geared towards fatty acid combustion.
Collapse
Affiliation(s)
- Ruiyin Chu
- Department of Functional Genomics, Aventis Pharmaceuticals, Inc., Bridgewater, New Jersey 08807, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Macdonald N, Roberts R. Proteomic analysis of rodent hepatic responses to peroxisome proliferators. Methods Enzymol 2003; 357:249-58. [PMID: 12424915 DOI: 10.1016/s0076-6879(02)57683-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Neil Macdonald
- Central Toxicology Laboratory, Syngenta, Macclesfield SK10 4TJ, United Kingdom
| | | |
Collapse
|
3
|
Holmes EW, Bingham CM, Cunningham ML. Hepatic expression of polymerase beta, Ref-1, PCNA, and Bax in WY 14,643-exposed rats and hamsters. Exp Mol Pathol 2002; 73:209-19. [PMID: 12565796 DOI: 10.1006/exmp.2002.2477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatic levels of three protein markers of oxidative stress, polymerase beta, Ref-1, and PCNA, and of the pro-apoptotic protein, Bax, were quantitated after exposure to WY 14,643 (500 ppm in the feed) for 6 or 34 days in a rodent that is susceptible peroxisome proliferator (PP)-induced liver tumors (the Sprague Dawley rat) and in a rodent that is relatively resistant PP-induced liver tumors (the Syrian hamster). The analysis of detergent-extracted whole liver homogenates by immunoblotting showed a marked increase in the abundance of a 45-kDa variant of polymerase beta immunoreactivity and significant increases in the expression of Ref-1 and PCNA in WY 14,643-exposed rats. In contrast. WY 14,643-exposed hamsters expressed only trace levels of the polymerase beta variant and showed significant decreases in the expression of Ref-1 and PCNA. Long-term WY 14,643 exposure was associated with marked decreases in Bax expression in both species. Dose-response studies in the rat showed that the hepatic expression of the polymerase beta and Ref-1 were significantly increased after 6 days of exposure to WY 14,643 at levels of 5 and 50 ppm, respectively. The analysis of subcellular fractions of rat liver showed that the pathological increases in the levels of polymerase beta, Ref-1, and PCNA were especially prominent in mitochondria-enriched particulate liver subfractions. These results indicate that WY 14,643 exposure is associated with an increase in oxidative stress to the liver and that liver mitochondria are a major target of WY 14,643-associated liver damage. Our data are consistent with the hypothesis that the chronic overexpression of mutagenic or oncogenic effectors like polymerase beta and Ref-1 in a setting of increased hepatocyte proliferation and decreased apoptosis may facilitate peroxisome proliferator-induced hepatocellular carcinoma in the rat.
Collapse
Affiliation(s)
- E W Holmes
- Department of Pathology, Loyola University Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
4
|
Ge R, Tao L, Kramer PM, Cunningham ML, Pereira MA. Effect of peroxisome proliferators on the methylation and protein level of the c-myc protooncogene in B6C3F1 mice liver. J Biochem Mol Toxicol 2002; 16:41-7. [PMID: 11857776 DOI: 10.1002/jbt.10019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisome proliferators in general are nongenotoxic mouse liver carcinogens for which DNA hypomethylation and altered gene expression are proposed mechanisms. Therefore, the peroxisome proliferators 2,4-dichlorophenoxyacetic acid (2,4-D), dibutyl phthalate (DBP), gemfibrozil, and Wy-14,643 were evaluated for the ability to alter the methylation and expression of the c-myc protooncogene. Male B6C3F1 mice were administered for 6 days in their diet Wy-14,643 (5-500 ppm), 2,4-D (1,680 ppm), DBP (20,000 ppm), or gemfibrozil (8,000 ppm). All four peroxisome proliferators caused hypomethylation of the c-myc gene in the liver. Wy-14,643 appeared to be the most efficacious with a threshold between 10 and 50 ppm. The level of the c-myc protein was increased by Wy-14,643, but not the other peroxisome proliferators. When female B6C3F1 mice received a two-thirds partially hepatectomy and 16 h later were administered 50 mg/kg Wy-14,643 by gavage, hypomethylation of the gene occurred 24 h later. Hypomethylation was not found in mice that received Wy-14,643 following a sham operation. Hypomethylation of the c-myc gene within 24 h of administering Wy-14,643 after a partial hepatectomy but not after a sham operation supports the hypothesis that the peroxisome proliferators prevent methylation of hemimethylated sites formed by DNA replication.
Collapse
Affiliation(s)
- Rongrong Ge
- Department of Pathology, Medical College of Ohio, Toledo, OH 43614-5806, USA
| | | | | | | | | |
Collapse
|
5
|
Rothberg BE. The use of animal models in expression pharmacogenomic analyses. THE PHARMACOGENOMICS JOURNAL 2002; 1:48-58. [PMID: 11913726 DOI: 10.1038/sj.tpj.6500008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression pharmacogenomics applies genome/proteome scale differential expression technologies to both in vivo and in vitro models of drug response to identify candidate markers correlative with and predictive of drug toxicity and efficacy. It is anticipated to streamline drug development by triaging towards lead compounds and clinical candidates that maximize efficacy while minimizing safety risks. As the majority of expression pharmacogenomics will be performed on preclinical therapeutic candidates, compatibility with favored preclinical animal model systems will be essential. This review will address expression pharmacogenomics in the context of those animal model systems commonly used for pharmacokinetic, pharmacodynamic and toxicologic analyses. Specific discussions will cover: (A) relative robustness of genomic and proteomic technology platforms used to generate drug response data in critical model systems; (B) animal handling, treatment and other experimental design optimizations; (C) data analysis strategies for extracting and validating candidate pharmacogenomic markers; and (D) overarching limitations in applying expression pharmacogenomics to animal model systems.
Collapse
|
6
|
Yu LR, Shao XX, Jiang WL, Xu D, Chang YC, Xu YH, Xia QC. Proteome alterations in human hepatoma cells transfected with antisense epidermal growth factor receptor sequence. Electrophoresis 2001; 22:3001-8. [PMID: 11565794 DOI: 10.1002/1522-2683(200108)22:14<3001::aid-elps3001>3.0.co;2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The epidermal growth factor (EGF) is a member of the growth factor superfamily that can stimulate the proliferation of many types of cells. Overexpression of EGF receptor (EGFR) was observed in many types of cancer cells. Anti-EGFR antibodies or antisense nucleic acid sequences of EGFR can suppress the growth of hepatoma cells. In order to further investigate the proteome alterations associated with malignant growth of the human hepatoma cells and the influence of EGFR signal pathway on the cellular proteome, we have comparatively analyzed the proteomes of human hepatoma cells transfected with antisense EGFR sequence (cell strain JX-1) and its control cells (cell strain JX-0) by two-dimensional (2-D) gel electrophoresis and mass spectrometry. Image analysis of silver-stained 2-D gels revealed that 40 protein spots showed significant expression changes in JX-1 cells compared to JX-0 cells. Three of them, including the tumor suppressor protein maspin, changed with tendency to the normal levels. Two protein spots were identified as HSP27 in the same gel, and one of them had a reduced level in JX-1 cells. The apparent alterations of HSP27 in expression level might be the results from their differential chemical modifications, suggesting the effect of dynamic post-translational modifications of proteins on the growth of hepatoma cells. Other proteins such as glutathione peroxidase (GPX-1) and 14-3-3-sigma also exhibited altered expression in JX-1 cells, and their functional implications are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Electrophoresis, Gel, Two-Dimensional
- ErbB Receptors/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Heat-Shock Proteins/analysis
- Heat-Shock Proteins/biosynthesis
- Heat-Shock Proteins/genetics
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Sequence Data
- Neoplasm Proteins/analysis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oligodeoxyribonucleotides, Antisense/genetics
- Peptide Mapping
- Proteome
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Subtraction Technique
- Transfection
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- L R Yu
- Research Center for Proteome, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The rapid evolution of proteomics has continued during the past year, with a series of innovations in the core technologies of two-dimensional electrophoresis and mass spectrometry, and a diversity of productive research programmes. Well-annotated proteomics databases are now emerging in a number of fields to provide a platform for systematic research, with particularly promising progress in clinical applications such as cardiology and oncology. Large-scale quantitative research, comparable in power and sensitivity to that achieved for gene expression, is thus becoming a reality at the protein level.
Collapse
Affiliation(s)
- N L Anderson
- Large Scale Proteomics Corporation, Rockville, MD 20850, USA
| | | | | |
Collapse
|
8
|
Chevalier S, Macdonald N, Tonge R, Rayner S, Rowlinson R, Shaw J, Young J, Davison M, Roberts RA. Proteomic analysis of differential protein expression in primary hepatocytes induced by EGF, tumour necrosis factor alpha or the peroxisome proliferator nafenopin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4624-34. [PMID: 10903494 DOI: 10.1046/j.1432-1327.2000.01487.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxisome proliferators are nongenotoxic rodent-liver carcinogens that have been shown to cause both an induction of hepatocyte proliferation and a suppression of apoptosis. Both epidermal growth factor (EGF) and the peroxisome proliferator nafenopin induce DNA replication in primary rat hepatocyte cultures, but apparently through different signalling pathways. However, both EGF and nafenopin require tumour necrosis factor alpha (TNFalpha) signalling to induce DNA replication. By examining proteins isolated from rat primary hepatocyte cultures using two-dimensional gel electrophoresis and mass spectrometry, we found that proteins showing an altered expression pattern in response to nafenopin differed from those showing altered expression in response to EGF. However, many proteins showing altered expression upon stimulation with TNFalpha were common to both the EGF and nafenopin responses. These proteome profiling experiments contribute to a better understanding of the molecular mechanisms involved in the response to peroxisome proliferators. We found 32 proteins with altered expression upon stimulation with nafenopin, including muscarinic acetylcholine receptor 3, intermediate filament vimentin and the beta subunit of the ATP synthase. These nonperoxisomal protein targets offer insights into the mechanisms of peroxisome proliferator-induced carcinogenesis in rodents and provide opportunities to identify toxicological markers to facilitate early identification of nongenotoxic carcinogens.
Collapse
Affiliation(s)
- S Chevalier
- Cancer Biology group, Zeneca Central Toxicology Laboratory, Macclesfield, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cunningham MJ. Genomics and proteomics: the new millennium of drug discovery and development. J Pharmacol Toxicol Methods 2000; 44:291-300. [PMID: 11274896 DOI: 10.1016/s1056-8719(00)00111-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most pressing issues facing the pharmaceutical and biotechnology industry is the tremendous dropout rate of lead drug candidates. Over the last two decades, several new genomic technologies have been developed in hopes of addressing the issues of target identification and lead candidate optimization. Gene expression microarray is one of these technologies and this review describes the four main formats, which are currently available: (a) cDNA; (b) oligonucleotide; (c) electrokinetic; and (d) fiberoptic. Many of these formats have been developed with the goal of screening large numbers of genes. Recently, a high-throughput array format has been developed where a large number of samples can be assayed using arrays in parallel. In addition, focusing on gene expression may be only one avenue in preventing lead candidate failure. Proteomics or the study of protein expression may also play a role. Two-dimensional polyacrylamide gel electrophoresis (2-DE) coupled with mass spectroscopy has been the most widely accepted format to study protein expression. However, protein microarrays are now being developed and modified to a high-throughput screening format. Examples of several gene and protein expression studies as they apply to drug discovery and development are reviewed. These studies often result in large data sets. Examples of how several statistical methods (principal components analysis [PCA], clustering methods, Shannon entropy, etc.) have been applied to these data sets are also described. These newer genomic and proteomic technologies and their analysis and visualization methods have the potential to make the drug discovery and development process less costly and more efficient by aiding to select better target and lead candidates.
Collapse
Affiliation(s)
- M J Cunningham
- Genometrix, Inc., 2700 Research Forest Drive, The Woodlands, TX 77381, USA.
| |
Collapse
|
10
|
Giometti CS, Liang X, Tollaksen SL, Wall DB, Lubman DM, Subbarao V, Rao MS. Mouse liver selenium-binding protein decreased in abundance by peroxisome proliferators. Electrophoresis 2000; 21:2162-9. [PMID: 10892727 DOI: 10.1002/1522-2683(20000601)21:11<2162::aid-elps2162>3.0.co;2-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several studies with two-dimensional gel electrophoresis (2-DE) have shown that the abundance of numerous mouse liver proteins is altered in response to treatment with chemicals known to cause peroxisome proliferation. The peptide masses from tryptic digests of two liver proteins showing dramatic decreases in abundance in response to numerous peroxisome proliferators were used to search sequence databases. The selenium-binding protein 2 (SBP2 formerly 56 kDa acetaminophen-binding protein, AP 56) and selenium-binding protein 1 (SBP1 formerly 56 kDa selenium-binding protein, SP 56) in mouse liver, proteins with a high degree of sequence similarity, were the highest ranked identities obtained. Identity with SBP2 was subsequently confirmed by immunodetection with specific antiserum. Treatment of mice with 0.025% ciprofibrate resulted in the more basic of this pair of proteins being decreased to 30% of control abundance while the acidic protein was decreased to 7% of the control amount. Dexamethasone treatment, in contrast, caused increases of 80% and 20% in the abundance of the acidic and basic forms, respectively. Administration of dexamethasone to mice in combination with ciprofibrate produced expression of the acidic SBP2 at 23% of the control level and the basic SBP2 at 36%, a slightly moderated reduction compared with the decrease that occurred with ciprofibrate alone. These data suggest that peroxisome proliferators such as ciprofibrate cause a decrease in the abundance of the SBP2, which leads to increased cell proliferation, even in the presence of an inhibitor such as dexamethasone. Such a decrease in SBP, thought to serve as cell growth regulation factors, could be central to the nongenotoxic carcinogenicity of the peroxisome proliferators observed in rodents.
Collapse
Affiliation(s)
- C S Giometti
- Biosciences Division, Argonne Laboratory, IL 60439, USA.
| | | | | | | | | | | | | |
Collapse
|