1
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Möller J, Schorlemmer S, Hofmann J, Burkovski A. Cellular and Extracellular Proteome of the Animal Pathogen Corynebacterium silvaticum, a Close Relative of Zoonotic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Proteomes 2020; 8:proteomes8030019. [PMID: 32806579 PMCID: PMC7564913 DOI: 10.3390/proteomes8030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Corynebacterium silvaticum is a newly described animal pathogen, closely related to the emerging human pathogen Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, a major pathogen of small ruminants. In this study, proteins of a whole cell and a shaving fraction and the exoproteome of C. silvaticum strain W25 were analyzed as a first proteome study of this species. In total, 1305 proteins were identified out of 2013 proteins encoded by the W25 genome sequence and number of putative virulence factors were detected already under standard growth conditions including phospholipase D and sialidase. An up to now uncharacterized trypsin-like protease is by far the most secreted protein in this species, indicating a putative role in pathogenicity. Furthermore, the proteome analyses carried out in this study support the recently published taxonomical delineation of C. silvaticum from the closely related zoonotic Corynebacterium species.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Svenja Schorlemmer
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
4
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
5
|
Bott M, Brocker M. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 2012; 94:1131-50. [PMID: 22539022 PMCID: PMC3353115 DOI: 10.1007/s00253-012-4060-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/30/2022]
Abstract
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
6
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
7
|
Li L, Wada M, Yokota A. Cytoplasmic proteome reference map for a glutamic acid-producing Corynebacterium glutamicum ATCC 14067. Proteomics 2008; 7:4317-22. [PMID: 18040983 DOI: 10.1002/pmic.200700269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We constructed a cytoplasmic proteome reference map for a glutamic acid producing Corynebacterium glutamicum ATCC 14067 by 2-DE and protein identification by MALDI-TOF-MS and PMF using genome database of the type strain ATCC 13032. The map allowed us to identify 166 protein spots representing 139 different proteins. A considerable strain difference was observed in the proteomic images between strains ATCC 14067 and ATCC 13032 grown under the glutamic acid production conditions, suggesting the importance of strain-specific reference map for proteomic analysis.
Collapse
Affiliation(s)
- Liyuan Li
- Laboratory of Microbial Physiology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | | | | |
Collapse
|
8
|
Qi SW, Chaudhry MT, Zhang Y, Meng B, Huang Y, Zhao KX, Poetsch A, Jiang CY, Liu S, Liu SJ. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 2007; 7:3775-87. [PMID: 17880007 DOI: 10.1002/pmic.200700481] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current study examined the aromatic degradation and central metabolism in Corynebacterium glutamicum by proteomic and molecular methods. Comparative analysis of proteomes from cells grown on gentisate and on glucose revealed that 30% of the proteins of which their abundance changed were involved in aromatic degradation and central carbon metabolism. Similar results were obtained from cells grown on benzoate, 4-cresol, phenol, and resorcinol. Results from these experiments revealed that (i) enzymes involved in degradation of benzoate, 4-cresol, gentisate, phenol, and resorcinol were specifically synthesized and (ii) that the abundance of enzymes involved in central carbon metabolism of glycolysis/gluconeogenesis, pentose phosphate pathway, and TCA cycles were significantly changed on various aromatic compounds. Significantly, three novel proteins, NCgl0524, NCgl0525, and NCgl0527, were identified on 4-cresol. The genes encoding NCgl0525 and NCgl0527 were confirmed to be necessary for assimilation of 4-cresol with C. glutamicum. The abundance of fructose-1,6-bisphosphatase (Fbp) was universally increased on all the tested aromatic compounds. This Fbp gene was disrupted and the mutant WT(Deltafbp) lost the ability to grow on aromatic compounds. Genetic complementation by the Fbp gene restored this ability. We concluded that gluconeogenesis is a necessary process for C. glutamicum growing on various aromatic compounds.
Collapse
Affiliation(s)
- Su-Wei Qi
- State Key Laboratory of Microbial Resource, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH. BMC Microbiol 2007; 7:6. [PMID: 17254330 PMCID: PMC1794413 DOI: 10.1186/1471-2180-7-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 01/25/2007] [Indexed: 11/18/2022] Open
Abstract
Background The influence of the membrane-bound AAA+ protease FtsH on membrane and cytoplasmic proteins of Corynebacterium glutamicum was investigated in this study. For the analysis of the membrane fraction, anion exchange chromatography was combined with SDS-PAGE, while the cytoplasmic protein fraction was studied by conventional two-dimensional gel electrophoresis. Results In contrast to the situation in other bacteria, deletion of C. glutamicum ftsH has no significant effect on growth in standard minimal medium or response to heat or osmotic stress. On the proteome level, deletion of the ftsH gene resulted in a strong increase of ten cytoplasmic and membrane proteins, namely biotin carboxylase/biotin carboxyl carrier protein (accBC), glyceraldehyde-3-phosphate dehydrogenase (gap), homocysteine methyltransferase (metE), malate synthase (aceB), isocitrate lyase (aceA), a conserved hypothetical protein (NCgl1985), succinate dehydrogenase A (sdhA), succinate dehydrogenase B (sdhB), succinate dehydrogenase CD (sdhCD), and glutamate binding protein (gluB), while 38 cytoplasmic and membrane-associated proteins showed a decreased abundance. The decreasing amount of succinate dehydrogenase A (sdhA) in the cytoplasmic fraction of the ftsH mutant compared to the wild type and its increasing abundance in the membrane fraction indicates that FtsH might be involved in the cleavage of a membrane anchor of this membrane-associated protein and by this changes its localization. Conclusion The data obtained hint to an involvement of C. glutamicum FtsH protease mainly in regulation of energy and carbon metabolism, while the protease is not involved in stress response, as found in other bacteria.
Collapse
|
11
|
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. Emerging Corynebacterium glutamicum systems biology. J Biotechnol 2006; 124:74-92. [PMID: 16406159 DOI: 10.1016/j.jbiotec.2005.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/12/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Corynebacterium glutamicum is widely used for the biotechnological production of amino acids. Amino acid producing strains have been improved classically by mutagenesis and screening as well as in a rational manner using recombinant DNA technology. Metabolic flux analysis may be viewed as the first systems approach to C. glutamicum physiology since it combines isotope labeling data with metabolic network models of the biosynthetic and central metabolic pathways. However, only the complete genome sequence of C. glutamicum and post-genomics methods such as transcriptomics and proteomics have allowed characterizing metabolic and regulatory properties of this bacterium on a truly global level. Besides transcriptomics and proteomics, metabolomics and modeling approaches have now been established. Systems biology, which uses systematic genomic, proteomic and metabolomic technologies with the final aim of constructing comprehensive and predictive models of complex biological systems, is emerging for C. glutamicum. We will present current developments that advanced our insight into fundamental biology of C. glutamicum and that in the future will enable novel biotechnological applications for the improvement of amino acid production.
Collapse
|
12
|
Hansmeier N, Chao TC, Pühler A, Tauch A, Kalinowski J. The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacteriumCorynebacterium efficiens YS-314 in comparison to those ofCorynebacterium glutamicum ATCC 13032. Proteomics 2006; 6:233-50. [PMID: 16302278 DOI: 10.1002/pmic.200500144] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reference maps of the cytosolic, cell surface and extracellular proteome fractions of the amino acid-producing soil bacterium Corynebacterium efficiens YS-314 were established. The analysis window covers a pI range from 3 to 7 along with a molecular mass range from 10 to 130 kDa. After second-dimensional separation on SDS-PAGE and Coomassie staining, computational analysis detected 635 protein spots in the cytosolic proteome fraction, whereas 76 and 102 spots were detected in the cell surface and extracellular proteomes, respectively. By means of MALDI-TOF-MS and tryptic peptide mass fingerprinting, 164 cytosolic proteins, 49 proteins of the cell surface and 89 extracellular protein spots were identified, representing in total 177 different proteins. Additionally, reference maps of the three cellular proteome fractions of the close phylogenetic relative Corynebacterium glutamicum ATCC 13032 were generated and used for comparative proteomics. Classification according to the Clusters of Orthologous Groups of proteins scheme and abundance analysis of the identified proteins revealed species-specific differences. The high abundance of molecular chaperones and amino acid biosynthesis enzymes in C. efficiens points to environmental adaptations of this recently discovered amino acid-producing bacterium.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
13
|
Beckers G, Strösser J, Hildebrandt U, Kalinowski J, Farwick M, Krämer R, Burkovski A. Regulation of AmtR-controlled gene expression inCorynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol 2005; 58:580-95. [PMID: 16194241 DOI: 10.1111/j.1365-2958.2005.04855.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AmtR, the master regulator of nitrogen control in Corynebacterium glutamicum, represses transcription of a number of genes during nitrogen surplus. Repression is released by an interaction of AmtR with signal transduction protein GlnK. As shown by pull-down assays and gel retardation experiments, only adenylylated GlnK, which is present in the cells during nitrogen limitation, is able to bind to AmtR. The AmtR regulon was characterized in this study by a combination of bioinformatics, transcriptome and proteome analyses. At least 33 genes are directly controlled by the repressor protein including those encoding transporters and enzymes for ammonium assimilation (amtA, amtB, glnA, gltBD), urea and creatinine metabolism (urtABCDE, ureABCEFGD, crnT, codA), a number of biochemically uncharacterized enzymes and transport systems (NCgl1099, NCgl1100, NCgl 1915-1918) as well as signal transduction proteins (glnD, glnK). For the AmtR regulon, an AmtR box has been defined which comprises the sequence tttCTATN6AtAGat/aA. Furthermore, the transcriptional organization of AmtR-regulated genes and operons was characterized.
Collapse
Affiliation(s)
- Gabriele Beckers
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Merkens H, Beckers G, Wirtz A, Burkovski A. Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 2005; 51:59-65. [PMID: 15971090 DOI: 10.1007/s00284-005-4531-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 02/12/2005] [Indexed: 11/25/2022]
Abstract
Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the mycolic acids-containing actinomycetes, is able to use the lignin degradation products ferulate, vanillate, and protocatechuate as sole carbon sources. The gene cluster responsible for vanillate catabolism was identified and characterized. The vanAB genes encoding vanillate demethylase are organized in an operon together with the vanK gene, coding for a transport system most likely responsible for protocatechuate uptake. While gene disruption mutagenesis revealed that vanillate demethylase is indispensable for ferulate and vanillate utilization, a vanK mutation does not lead to a complete growth arrest but to a decreased growth rate on protocatechuate, indicating that one or more additional protocatechuate transporter(s) are present in C. glutamicum.
Collapse
Affiliation(s)
- Hedda Merkens
- Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 , Köln, Germany
| | | | | | | |
Collapse
|
15
|
Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 2005; 71:2391-402. [PMID: 15870326 PMCID: PMC1087573 DOI: 10.1128/aem.71.5.2391-2402.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 12/01/2004] [Indexed: 11/20/2022] Open
Abstract
Theresponse of Corynebacterium glutamicum to ammonium limitation was studied by transcriptional and proteome profiling of cells grown in a chemostat. Our results show that ammonium-limited growth of C. glutamicum results in a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation, amino acid biosynthesis, and carbon metabolism, as well as a decreased cell division. Since transcription at different growth rates was studied, it was possible to distinguish specific responses to ammonium limitation and more general, growth rate-dependent alterations in gene expression. The latter include a number of genes encoding ribosomal proteins and genes for F(o)F(1)-ATP synthase subunits.
Collapse
Affiliation(s)
- Maike Silberbach
- Institut für Biochemie, Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Barreiro C, González-Lavado E, Brand S, Tauch A, Martín JF. Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol 2005; 187:884-9. [PMID: 15659666 PMCID: PMC545734 DOI: 10.1128/jb.187.3.884-889.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 10/26/2004] [Indexed: 11/20/2022] Open
Abstract
Proteome analysis of Corynebacterium glutamicum ATCC 13032 showed that levels of several proteins increased drastically in response to heat shock. These proteins were identified as DnaK, GroEL1, GroEL2, ClpB, GrpE, and PoxB, and their heat response was in agreement with previous transcriptomic results. A major heat-induced protein was absent in the proteome of strain 13032B of C. glutamicum, used for genome sequencing in Germany, compared with the wild-type ATCC 13032 strain. The missing protein was identified as GroEL1 by matrix-assisted laser desorption ionization-time of flight peptide mass fingerprinting, and the mutation was found to be due to an insertion sequence, IsCg1, that was integrated at position 327 downstream of the translation start codon of the groEL1 gene, resulting in a truncated transcript of this gene, as shown by Northern analysis. The GroEL1 chaperone is, therefore, dispensable in C. glutamicum. On the other hand, GroEL2 appears to be essential for growth. Based on these results, the role of the duplicate groEL1 and groEL2 genes is analyzed.
Collapse
Affiliation(s)
- Carlos Barreiro
- Institute of Biotechnology of León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | | | | | | | | |
Collapse
|
17
|
Beckers G, Bendt AK, Krämer R, Burkovski A. Molecular identification of the urea uptake system and transcriptional analysis of urea transporter- and urease-encoding genes in Corynebacterium glutamicum. J Bacteriol 2004; 186:7645-52. [PMID: 15516578 PMCID: PMC524917 DOI: 10.1128/jb.186.22.7645-7652.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 08/16/2004] [Indexed: 11/20/2022] Open
Abstract
The molecular identification of the Corynebacterium glutamicum urea uptake system is described. This ABC-type transporter is encoded by the urtABCDE operon, which is transcribed in response to nitrogen limitation. Expression of the urt genes is regulated by the global nitrogen regulator AmtR, and an amtR deletion strain showed constitutive expression of the urtABCDE genes. The AmtR repressor protein also controls transcription of the urease-encoding ureABCEFGD genes in C. glutamicum. The ure gene cluster forms an operon which is mainly transcribed in response to nitrogen starvation. To confirm the increased synthesis of urease subunits under nitrogen limitation, proteome analyses of cytoplasmic protein extracts from cells grown under nitrogen surplus and nitrogen limitation were carried out, and five of the seven urease subunits were identified.
Collapse
Affiliation(s)
- Gabriele Beckers
- Institut für Biochemie der Universität zu Köln, Cologne, Germany
| | | | | | | |
Collapse
|
18
|
Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A. Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 2004; 54:132-47. [PMID: 15458411 DOI: 10.1111/j.1365-2958.2004.04247.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
P(II)-type signal transduction proteins play a central role in nitrogen regulation in many bacteria. In response to the intracellular nitrogen status, these proteins are rendered in their function and interaction with other proteins by modification/demodification events, e.g. by phosphorylation or uridylylation. In this study, we show that GlnK, the only P(II)-type protein in Corynebacterium glutamicum, is adenylylated in response to nitrogen starvation and deadenylylated when the nitrogen supply improves again. Both processes depend on the GlnD protein. As shown by mutant analyses, the modifying activity of this enzyme is located in the N-terminal part of the enzyme, while demodification depends on its C-terminal domain. Besides its modification status, the GlnK protein changes its intracellular localization in response to changes of the cellular nitrogen supply. While it is present in the cytoplasm during nitrogen starvation, the GlnK protein is sequestered to the cytoplasmic membrane in response to an ammonium pulse following a nitrogen starvation period. About 2-5% of the GlnK pool is located at the cytoplasmic membrane after ammonium addition. GlnK binding to the cytoplasmic membrane depends on the ammonium transporter AmtB, which is encoded in the same transcriptional unit as GlnK and GlnD, the amtB-glnK-glnD operon. In contrast, the structurally related methylammonium/ammonium permease AmtA does not bind GlnK. The membrane-bound GlnK protein is stable, most likely to inactivate AmtB-dependent ammonium transport in order to prevent a detrimental futile cycle under post-starvation ammonium-rich conditions, while the majority of GlnK is degraded within 2-4 min. Proteolysis in the transition period from nitrogen starvation to nitrogen-rich growth seems to be specific for GlnK; other proteins of the nitrogen metabolism, such as glutamine synthetase, or proteins unrelated to ammonium assimilation, such as enolase and ATP synthase subunit F(1)beta, are stable under these conditions. Our analyses of different mutant strains have shown that at least three different proteases influence the degradation of GlnK, namely FtsH, the ClpCP and the ClpXP protease complex.
Collapse
Affiliation(s)
- Julia Strösser
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | | | | | | | | |
Collapse
|
19
|
Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1-23. [PMID: 15187006 DOI: 10.1152/ajplung.00301.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave. HSW 825, San Francisco, CA 94143-0130, USA.
| | | | | | | |
Collapse
|
20
|
Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 2004; 186:1769-84. [PMID: 14996808 PMCID: PMC355958 DOI: 10.1128/jb.186.6.1769-1784.2004] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in-depth analysis of the intracellular metabolite concentrations, metabolic fluxes, and gene expression (metabolome, fluxome, and transcriptome, respectively) of lysine-producing Corynebacterium glutamicum ATCC 13287 was performed at different stages of batch culture and revealed distinct phases of growth and lysine production. For this purpose, 13C flux analysis with gas chromatography-mass spectrometry-labeling measurement of free intracellular amino acids, metabolite balancing, and isotopomer modeling were combined with expression profiling via DNA microarrays and with intracellular metabolite quantification. The phase shift from growth to lysine production was accompanied by a decrease in glucose uptake flux, the redirection of flux from the tricarboxylic acid (TCA) cycle towards anaplerotic carboxylation and lysine biosynthesis, transient dynamics of intracellular metabolite pools, such as an increase of lysine up to 40 mM prior to its excretion, and complex changes in the expression of genes for central metabolism. The integrated approach was valuable for the identification of correlations between gene expression and in vivo activity for numerous enzymes. The glucose uptake flux closely corresponded to the expression of glucose phosphotransferase genes. A correlation between flux and expression was also observed for glucose-6-phosphate dehydrogenase, transaldolase, and transketolase and for most TCA cycle genes. In contrast, cytoplasmic malate dehydrogenase expression increased despite a reduction of the TCA cycle flux, probably related to its contribution to NADH regeneration under conditions of reduced growth. Most genes for lysine biosynthesis showed a constant expression level, despite a marked change of the metabolic flux, indicating that they are strongly regulated at the metabolic level. Glyoxylate cycle genes were continuously expressed, but the pathway exhibited in vivo activity only in the later stage. The most pronounced changes in gene expression during cultivation were found for enzymes at entry points into glycolysis, the pentose phosphate pathway, the TCA cycle, and lysine biosynthesis, indicating that these might be of special importance for transcriptional control in C. glutamicum.
Collapse
Affiliation(s)
- Jens Olaf Krömer
- Biochemical Engineering, Saarland University, Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
21
|
Ramos A, Honrubia MP, Valbuena N, Vaquera J, Mateos LM, Gil JA. Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. MICROBIOLOGY-SGM 2004; 149:3531-3542. [PMID: 14663085 DOI: 10.1099/mic.0.26653-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Brevibacterium lactofermentum, as in many Gram-positive bacteria, a divIVA gene is located downstream from the dcw cluster of cell-division- and cell-wall-related genes. This gene (divIVA(BL)) is mostly expressed during exponential growth, and the protein encoded, DivIVA(BL,) bears some sequence similarity to antigen 84 (Ag84) from mycobacteria and was detected with monoclonal antibodies against Ag84. Disruption experiments using an internal fragment of the divIVA(BL) gene or a disrupted divIVA(BL) cloned in a suicide conjugative plasmid were unsuccessful, suggesting that the divIVA(BL) gene is needed for cell viability in BREV: lactofermentum. Transformation of BREV: lactofermentum with a multicopy plasmid containing divIVA(BL) drastically altered the morphology of the corynebacterial cells, which became larger and bulkier, and a GFP fusion to DivIVA(BL) mainly localized to the ends of corynebacterial cells. This localization pattern, together with the overproduction phenotype, suggests that DivIVA may be important in regulating the apical growth of daughter cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Bacterial
- Antibodies, Monoclonal
- Antigens, Bacterial/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Base Sequence
- Brevibacterium/genetics
- Brevibacterium/immunology
- Brevibacterium/metabolism
- Brevibacterium/ultrastructure
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/immunology
- Cell Cycle Proteins/metabolism
- Cloning, Molecular
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Gene Targeting
- Genes, Bacterial
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Multigene Family
- Plasmids/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombination, Genetic
- Sequence Homology, Amino Acid
- Transformation, Genetic
Collapse
Affiliation(s)
- Angelina Ramos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - María Pilar Honrubia
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Noelia Valbuena
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José Vaquera
- Departamento de Biología Celular, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| | - José A Gil
- Departamento de Ecología, Genética y Microbiología, Área de Microbiología, Facultad de Biología, Universidad de León, 24071 León, Spain
| |
Collapse
|
22
|
Bayan N, Houssin C, Chami M, Leblon G. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 2003; 104:55-67. [PMID: 12948629 DOI: 10.1016/s0168-1656(03)00163-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corynebacteria belong to a distinct Gram-positive group of bacteria including mycobacteria and nocardia, which are characterized by the presence of mycolic acids in their cell wall. These bacteria share the property of having an unusual cell envelope structural organization close to Gram-negative bacteria. In addition to the inner membrane, the cell envelope is constituted of a thick arabinogalactan-peptidoglycan polymer covalently linked to an outer lipid layer, which is mainly composed of mycolic acids and probably organized in an outer membrane like structure. In some species, the cell is covered by a crystalline surface layer composed of a single protein species, which is anchored in the outer membrane like barrier. An increasing number of reports have led to a better understanding of the structure of the cell wall of Corynebacterium glutamicum. These works included the characterization of several cell wall proteins like S-layer protein and porins, genetic and biochemical characterization of mycolic acids biosynthesis, ultrastructural description of the cell envelope, and chemical analysis of its constituents. All these data address new aspects regarding cell wall permeability towards macromolecules and amino acids but also open new opportunities for biotechnology applications.
Collapse
Affiliation(s)
- N Bayan
- Unité de Génétique Moléculaire, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
23
|
Kotrba P, Inui M, Yukawa H. The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 2001; 289:1307-13. [PMID: 11741338 DOI: 10.1006/bbrc.2001.6116] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is widespread among bacteria where it mediates carbohydrate uptake and often serves in carbon control. Here we present cloning and analysis of the monocistronic ptsI gene of Corynebacterium glutamicum R, which encodes PTS Enzyme I (EI). EI catalyzes the first reaction of PTS and the reported ptsI was shown to complement the corresponding defect in Escherichia coli. The deduced 59.2-kDa EI of 564 amino acids shares more than 50% homology with EIs from Bacillus stearothermophilus, Bacillus subtilis, and Lactobacillus sake. Chromosomal inactivation of ptsI demonstrated that EI plays an indispensable role in PTS of C. glutamicum R and this system represents a dominant sugar uptake system. Cellobiose was only transported and utilized in adaptive mutants of C. glutamicum R. Cellobiose transport was also found to be PTS-dependent and repressed by PTS sugar glucose.
Collapse
Affiliation(s)
- P Kotrba
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto, 619-0292, Japan
| | | | | |
Collapse
|
24
|
Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M, Hermann T, Bott M. A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 2001; 22:4404-22. [PMID: 11824608 DOI: 10.1002/1522-2683(200112)22:20<4404::aid-elps4404>3.0.co;2-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We present a high-resolution reference map for soluble proteins obtained from Corynebacterium glutamicum cells grown in glucose minimal medium. The analysis window covers the pl range from 4-6 and the molecular mass range from 5-100 kDa. Using overlapping narrow immobilized pH gradients for isoelectric focusing, 970 protein spots were detected after second-dimensional separation on SDS-polyacrylamide gels and colloidal Coomassie-staining. By tryptic peptide mass fingerprinting 169 protein spots were identified, representing 152 different proteins including many enzymes involved in central metabolism (18), amino acid biosynthesis (24) and nucleotide biosynthesis (11). Thirty-five of the identified proteins have no known function. A comparison of the observed and the expected physicochemical properties of the identified proteins indicated that nine proteins were covalently modified, since variants with apparently identical molecular mass, but differing pl were detected. The N-termini of eight proteins were determined by post-source decay (PSD) analysis of selected peptides. In addition to the soluble proteins, a map of the membrane-bound proteins within the pl range 4-7 is presented, which contains 660 protein spots, 22 of which were identified, representing 13 different proteins.
Collapse
Affiliation(s)
- S Schaffer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nolden L, Ngouoto-Nkili CE, Bendt AK, Krämer R, Burkovski A. Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 2001; 42:1281-95. [PMID: 11886559 DOI: 10.1046/j.1365-2958.2001.02694.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel nitrogen control system regulating the transcription of genes expressed in response to nitrogen starvation in Corynebacterium glutamicum was identified by us recently. In this communication, we also show that the nitrogen regulation cascade in C. glutamicum functions by a new mechanism, although components highly similar to sensor and signal transmitter proteins of Escherichia coli are used, namely uridylyltransferase and a PII-type GlnK protein. The genes encoding these key components of the nitrogen regulation cascade, glnD and glnK, are organized in an operon together with amtB, which codes for an ammonium permease. Using a combination of site-directed mutagenesis, RNA hybridization experiments, reporter gene assays, transport measurements and non-denaturing gel electrophoresis followed by immunodetection, we showed that GlnK is essential for nitrogen control and that signal transduction is transmitted by uridylylation of this protein. As a consequence of the latter, a glnD deletion strain lacking uridylyltransferase is impaired in its response to nitrogen shortage. The glnD mutant revealed a decreased growth rate in the presence of limiting amounts of ammonium or urea; additionally, changes in its protein profile were observed, as shown by in vivo labelling and two-dimensional PAGE. In contrast to E. coli, expression of glnD is upregulated upon nitrogen limitation in C. glutamicum. This indicates that the glnD gene product is probably not the primary sensor of nitrogen status in C. glutamicum as shown for enterobacteria. In accordance with this hypothesis, we found a deregulated nitrogen control as a result of the overexpression of glnD. Furthermore, quantification of cytoplasmic amino acid pools excluded the possibility that a fall in glutamine concentration is perceived as the signal for nitrogen starvation by C. glutamicum, as is found in enterobacteria. Direct measurements of the intracellular ammonium pool indicated that the concentration of this compound might indicate the cellular nitrogen status. Deduced from glnK and glnD expression patterns and the genetic organization of these genes, this regulatory mechanism is also present in Corynebacterium diphtheriae, the causative agent of diphtheria.
Collapse
Affiliation(s)
- L Nolden
- Institut für Biochemie, Universität zu Köln, Zülpicher-Str. 47, D-50674 Köln, Germany
| | | | | | | | | |
Collapse
|
26
|
Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A. Proteome analysis of Corynebacterium glutamicum. Electrophoresis 2001; 22:1712-23. [PMID: 11425227 DOI: 10.1002/1522-2683(200105)22:9<1712::aid-elps1712>3.0.co;2-g] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By the use of different Corynebacterium glutamicum strains more than 1.4 million tons of amino acids, mainly L-glutamate and L-lysine, are produced per year. A project was started recently to elucidate the complete DNA sequence of this bacterium. In this communication we describe an approach to analyze the C. glutamicum proteome, based on this genetic information, by a combination of two-dimensional (2-D) gel electrophoresis and protein identification via microsequencing or mass spectrometry. We used these techniques to resolve proteins of C. glutamicum with the aim to establish 2-D protein maps as a tool for basic microbiology and for strain improvement. In order to analyze the C. glutamicum proteome, methods were established to fractionate the C. glutamicum proteins according to functional entities, i.e., cytoplasm, membranes, and cell wall. Protein spots of the cytoplasmic and membrane fraction were identified by N-terminal sequencing, immunodetection, matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray ionization-mass spectrometry (ESI-MS). Additionally, a protocol to analyze proteins secreted by C. glutamicum was established. Approximately 40 protein spots were observed on silver-stained 2-D gels, 12 of which were identified.
Collapse
Affiliation(s)
- T Hermann
- Degussa-Hüls AG, Halle/Westfalen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Merkamm M, Guyonvarch A. Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability. J Bacteriol 2001; 183:1284-95. [PMID: 11157941 PMCID: PMC95002 DOI: 10.1128/jb.2001.183.4.1284-1295.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sodA gene encoding the Corynebacterium melassecola manganese-cofactored superoxide dismutase (SOD) has been cloned in Escherichia coli and sequenced. The gene is transcribed monocistronically; the predicted polypeptide is 200 amino acids long and associates in a homotetrameric, manganese-dependent form, able to complement an SOD-deficient E. coli mutant. A second open reading frame, coding for a putative 217-amino-acid protein with high homology to peptide methionine sulfoxide reductases from various origins, has been identified immediately upstream of sodA in the opposite transcription orientation. The sodA gene was inactivated by insertion of an integrative vector carrying a kanamycin resistance gene. The growth rate of the SOD-deficient integrant was only slightly affected in BHI rich medium as well as in BMCG chemically defined medium, but was strongly affected by the presence of the redox-cycling agent paraquat. The SOD deficiency had, on the other hand, a deleterious effect on viability as soon as the culture entered the stationary phase of growth in BHI medium. Surprisingly, SOD deficiency was able to rescue the dramatic loss of viability observed for the wild-type strain in BMCG synthetic medium when glucose was not the limiting growth factor.
Collapse
Affiliation(s)
- M Merkamm
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre d'Orsay, F-91405 Orsay Cedex, France
| | | |
Collapse
|
28
|
Sabounchi-Schütt F, Aström J, Olsson I, Eklund A, Grunewald J, Bjellqvist B. An immobiline DryStrip application method enabling high-capacity two-dimensional gel electrophoresis. Electrophoresis 2000; 21:3649-56. [PMID: 11271483 DOI: 10.1002/1522-2683(200011)21:17<3649::aid-elps3649>3.0.co;2-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the field of proteomics the need to detect low-abundance cellular components, such as regulatory proteins, is of critical importance. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is one of the most commonly used separation tools for these biological investigations. In this paper we report an alternative micropreparative 2-D PAGE sample application method, called the "paper bridge loading" method. This method makes it possible to apply a larger sample volume to commercially available immobilized pH gradient (IPG) strips. The Vh products required for focusing are only marginally longer than those used in analytical experiments. The method was compared to traditional cup loading and in-gel rehydration. With 18 cm long narrow-range Immobiline DryStrip pH 4.5-5.5, the "paper bridge" method allowed the application of 10 mg human plasma proteins compared to 3 mg with traditional loading methods. The corresponding figures using Escherichia coli sample was found to be 6 mg and less than 2 mg, respectively. The paper bridge method also showed the best results in terms of spot resolution and separation of high molecular weight proteins.
Collapse
Affiliation(s)
- F Sabounchi-Schütt
- Karolinska Institutet, Department of Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Ohlmeier S, Scharf C, Hecker M. Alkaline proteins of Bacillus subtilis: first steps towards a two-dimensional alkaline master gel. Electrophoresis 2000; 21:3701-9. [PMID: 11271489 DOI: 10.1002/1522-2683(200011)21:17<3701::aid-elps3701>3.0.co;2-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The genomic sequence of Bacillus subtilis, which is the best studied Gram-positive bacterium, enabled us to obtain a theoretical two-dimensional (2-D) map, demonstrating that about one-third of this proteome has a theoretical alkaline isoelectric point (pI). This represents an important part of the entire proteome, which is not detectable in conventional 2-D gels (pH range 4-7). Sequence analysis revealed that 91% of the ribosomal proteins and a high amount of theoretical membrane proteins should be localized in the alkaline pH range requiring different protein extraction procedures. In order to find the pH range which gives the best resolution results for the alkaline proteins of B. subtilis, immobilized pH gradients (IPGs) with different pH ranges (pH 6-10, 6-11, 4-12, 9-12, and 3-10) were tested and optimized for IPG 4-12. Here we present a version of a first alkaline master 2-D gel for B. subtilis, which is a further complement of the already existing master gel (pH 4-7) in the Sub2D database. Almost 150 spots could be detected and 41 proteins have already been identified.
Collapse
Affiliation(s)
- S Ohlmeier
- Institute of Microbiology and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Germany
| | | | | |
Collapse
|
30
|
Schmi R, Uhlemann EM, Nolden L, Wersch G, Hecker R, Hermann T, Marx A, Burkovski A. Response to nitrogen starvation in Corynebacterium glutamicum. FEMS Microbiol Lett 2000; 187:83-8. [PMID: 10828405 DOI: 10.1111/j.1574-6968.2000.tb09141.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Proteins strongly synthesized in Corynebacterium glutamicum during nitrogen restriction were examined by two-dimensional gel electrophoresis and microsequencing. Two main groups of enzymes were identified beside miscellaneous proteins, enzymes involved (i) in protein synthesis, and (ii) in carbon metabolism. Biochemical measurements revealed an increase of oxygen consumption during nitrogen starvation, indicating an enhanced energy demand of the cells. By Northern hybridizations, an increased transcription for the gap and fda genes upon nitrogen deprivation was shown.
Collapse
Affiliation(s)
- R Schmi
- ABteilung Mikrobiologie, Universität Osnabrück, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hermann T, Finkemeier M, Pfefferle W, Wersch G, Krämer R, Burkovski A. Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 2000; 21:654-9. [PMID: 10726773 DOI: 10.1002/(sici)1522-2683(20000201)21:3<654::aid-elps654>3.0.co;2-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An improved protocol for the two-dimensional analysis of proteins of the Corynebacterium glutamicum cytoplasmic membrane fraction is described. By use of increased 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) concentrations (2-4%) and an optimized electrophoresis protocol, horizontal streaking of proteins of the cytoplasmic membrane fraction was almost completely avoided. More important, in contrast to a previously published method, both a sample tray and IPG-phor isoelectric focusing unit can be used for the in-gel application of proteins. The described protocol was also found to be suitable for hydrophilic cytoplasmic proteins. Additionally, the preparation and analysis of C. glutamicum cell surface proteins is described. Proteins were extracted with lauroyl sarcosinate and 100-120 spots were separated on two-dimensional (2-D) gels in comparison to 18-20 spots observed previously by standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). C. glutamicum proteins can now be separated into three distinct fractions resembling different functional units of the bacterial cell.
Collapse
Affiliation(s)
- T Hermann
- DEGUSSA-Hüls AG, Halle/Westfalen, Germany
| | | | | | | | | | | |
Collapse
|