1
|
Ďuriš M, Hradski J, Szucs R, Masár M. Microchip isotachophoresis for green and sustainable pharmaceutical quality control: Method validation and application to complex pharmaceutical formulations. J Chromatogr A 2024; 1729:465055. [PMID: 38852265 DOI: 10.1016/j.chroma.2024.465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Universal microchip isotachophoresis (μITP) methods were developed for the determination of cationic and anionic macrocomponents (active pharmaceutical ingredients and counterions) in cardiovascular drugs marketed in salt form, amlodipine besylate and perindopril erbumine. The developed methods are characterized by low reagent and sample consumption, waste production and energy consumption, require only minimal sample preparation and provide fast analysis. The greenness of the proposed methods was assessed using AGREE. An internal standard addition was used to improve the quantitative parameters of μITP. The proposed methods were validated according to the ICH guideline. Linearity, precision, accuracy and specificity were evaluated for each of the studied analytes and all set validation criteria were met. Good linearity was observed in the presence of matrix and in the absence of matrix, with a correlation coefficient of at least 0.9993. The developed methods allowed precise and accurate determination of the studied analytes, the RSD of the quantitative and qualitative parameters were less than 1.5% and the recoveries ranged from 98 to 102%. The developed μITP methods were successfully applied to the determination of cationic and anionic macrocomponents in six commercially available pharmaceutical formulations.
Collapse
Affiliation(s)
- Marta Ďuriš
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia.
| | - Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| |
Collapse
|
2
|
Chen Y, Xia L, Xiao X, Li G. Enhanced capillary zone electrophoresis in cyclic olefin copolymer microchannels using the combination of dynamic and static coatings for rapid analysis of carnosine and niacinamide in cosmetics. J Sep Sci 2022; 45:2045-2054. [PMID: 35324077 DOI: 10.1002/jssc.202101007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
Cosmetics having medicinal effects, including anti-inflammatory and antioxidant, have become a daily care routine consumption. The peptide additives, such as carnosine and nicotinamide, were frequently used to realize these medicinal effects. To accomplish rapid and effective quantitation of carnosine and niacinamide in cosmetics, a capillary zone electrophoresis was executed in cyclic olefin copolymer microchips having both dynamic and static coatings. The static coating of cyclic olefin copolymer microchannel was constructed from bovine albumin adsorption, immobilization and active site closure, while the dynamic coating was formed by adding surfactant into running buffer of capillary zone electrophoresis. The static coating can improve the hydrophilicity of cyclic olefin copolymer surface and avoid nonspecific peptide adsorption. The dynamic coating of sodium dodecyl sulfate in running buffer proved to be useful in flow velocity adjustment and the column efficiency enhancement in capillary zone electrophoresis separation channel of the cyclic olefin copolymer microchip device. A separation resolution up to 4.24 on the mixture of carnosine and nicotinamide was obtained. Moreover, an analysis method was established and applied to simultaneous carnosine and nicotinamide determination in a liquid whitening essence and a solid antiglycation pill and the results were verified by comparison with HPLC methods, indicating its potential in complex sample analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yali Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Development of Microchip Isotachophoresis Coupled with Ion Mobility Spectrometry and Evaluation of Its Potential for the Analysis of Food, Biological and Pharmaceutical Samples. Molecules 2021; 26:molecules26206094. [PMID: 34684674 PMCID: PMC8538814 DOI: 10.3390/molecules26206094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
An online coupling of microchip isotachophoresis (µITP) with ion mobility spectrometry (IMS) using thermal evaporation interface is reported for the first time. This combination integrates preconcentration power of the µITP followed by unambiguous identification of trace compounds in complex samples by IMS. Short-chain carboxylic acids, chosen as model analytes, were first separated by the µITP in a discontinuous electrolyte system at pH 5–6, and subsequently evaporated at 130 °C during their transfer to the IMS analyzer. Various parameters, affecting the transfer of the separated sample components through the evaporation system, were optimized to minimize dispersion and loss of the analytes as well as to improve sensitivity. The following analytical attributes were obtained for carboxylic acids in the standard solutions: 0.1–0.3 mg L−1 detection limits, 0.4–0.9 mg L−1 quantitation limits, linear calibration range from the quantitation limit to 75 mg L−1, 0.2–0.3% RSD of the IMS response and 98–102% accuracy. The analytical potential of the developed µITP-IMS combination was demonstrated on the analysis of various food, pharmaceutical and biological samples, in which the studied acids are naturally present. These include: apple vinegar, wine, fish sauce, saliva and ear drops. In the real samples, 0.3–0.6% RSD of the IMS response and 93–109% accuracy were obtained.
Collapse
|
4
|
Troška P, Hradski J, Chropeňová L, Szucs R, Masár M. Potential of microchip electrophoresis in pharmaceutical analysis: Development of a universal method for frequently prescribed nonsteroidal anti-inflammatory drugs. J Chromatogr A 2021; 1654:462453. [PMID: 34392125 DOI: 10.1016/j.chroma.2021.462453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/26/2022]
Abstract
A novel microchip electrophoresis method with conductivity detection for the determination of nonsteroidal anti-inflammatory drugs (NSAIDs) in several pharmaceutical formulations was developed. The three frequently used NSAIDs - acetylsalicylic acid, diclofenac and ibuprofen were baseline separated on a poly(methyl methacrylate) microchip with coupled separation channels. Elimination of matrix components such as excipients, was realized through online combination of isotachophoresis (ITP) with zone electrophoresis (ZE). ITP-ZE hyphenation can also facilitate preconcentration of target analytes. ITP was carried out in the first separation channel at pH 6.5, while the second channel of the microchip was used for ZE separation and detection of the analytes at pH 7.0. The developed ITP-ZE method was demonstrated to be applicable for direct and reliable determination of NSAIDs in eleven pharmaceutical formulations. The noticeable advantage of this approach is that only simple sample pretreatment (filtration and dilution) is necessary. The method performance parameters, such as linearity (20-250% of nominal concentration of studied NSAIDs in the test samples), accuracy (98-102%) and precision (less than 2% RSD) were obtained. This universal approach is suitable for the determination of frequently used NSAIDs in a single analysis in less than 15 min. In addition to simple sample pretreatment, low running costs and minimal environmental impact could make this method attractive for the analysis of pharmaceutical preparations.
Collapse
Affiliation(s)
- Peter Troška
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Lucia Chropeňová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, SK-84215 Bratislava, Slovakia.
| |
Collapse
|
5
|
Determination of Carminic Acid in Foodstuffs and Pharmaceuticals by Microchip Electrophoresis with Photometric Detection. SEPARATIONS 2020. [DOI: 10.3390/separations7040072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
This paper presents a novel miniaturized analytical method for the determination of carminic acid, a natural red food dye, in complex food and pharmaceutical matrices by microchip electrophoresis (MCE) with photometric detection. MCE has become a very attractive microscale separation technique because it offers high-speed, high-throughput, small sample injection volume and low reagents consumption. Fast determination of carminic acid in less than 5 min was achieved on a poly(methyl methacrylate) microchip in anionic separation mode at pH 6. Photometric detector based on light-emitting diode technology was set to a wavelength of 490 nm. Using a sample injection volume of 900 nL, a limit of detection of 69 nmol L−1 was achieved. A wide linear dynamic range over four orders of magnitude (from nmol L−1 to mmol L−1) was observed for peak area. Developed method provided favorable intra- and inter-day repeatability of the migration time (up to 2.5% RSD), as well as the repeatability of the peak area (less than 1.9% RSD), regardless of the sample type. The content of carminic acid was determined in various foodstuffs and pharmaceuticals, such as candies, saffron, non-alcoholic drink, and sore throat lozenges with good recoveries (92.5–104.0%).
Collapse
|
6
|
Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Troška P, Poboży E, Némethová Z, Masár M. Determination of Commonly Used Excipients in Pharmaceutical Preparations by Microchip Electrophoresis with Conductivity Detection. Chromatographia 2019. [DOI: 10.1007/s10337-019-03691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Hradski J, Chorváthová MD, Bodor R, Sabo M, Matejčík Š, Masár M. Quantitative aspects of microchip isotachophoresis for high precision determination of main components in pharmaceuticals. Anal Bioanal Chem 2016; 408:8669-8679. [DOI: 10.1007/s00216-016-9815-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
9
|
Koczka PI, Bodor R, Masár M, Gáspár A. Application of isotachophoresis in commercial capillary electrophoresis instrument using C4D and UV detection. Electrophoresis 2016; 37:2384-92. [DOI: 10.1002/elps.201600194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Péter I. Koczka
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| | - Róbert Bodor
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| |
Collapse
|
10
|
Rudašová M, Masár M. Precise determination ofN-acetylcysteine in pharmaceuticals by microchip electrophoresis. J Sep Sci 2015; 39:433-9. [DOI: 10.1002/jssc.201501025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Marína Rudašová
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| |
Collapse
|
11
|
Staňová AV, Hrenáková M, Marák J. Long-term analyses in automated electrophoretic analyzer in hydrodynamically closed separation system. J Chromatogr A 2015; 1392:110-7. [PMID: 25818560 DOI: 10.1016/j.chroma.2015.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Some potential problems that can occur during the analyses of complex samples by on-line combination of capillary isotachophoresis-capillary zone electrophoresis (cITP-CZE) in automated electrophoretic analyzer with the column-coupling configuration of the separation unit were studied in this work. The main focus was devoted on the reproducibility of important analytes' parameters (migration time, peak height and peak area) and also on the stability studies of selected low and high molecular mass analytes of inorganic/organic origins (bromate, vitamins, proteins) present at low concentration levels in different kinds of matrices (mineral water, human urine). Such study was carried out for the first time for the electrophoretic analyzer operating in the hydrodynamically closed separation system provided with contact-less conductivity detectors and UV detector in CZE step. Hydrodynamic and electroosmotic flows of the buffer solutions were suppressed and therefore, only the electrophoretic transport of ions was significant. Obtained results showed the different stabilities of the analytes and samples depending on their origin. The focus in the long-term analyses should be paid on the storage of the samples and on the regular changing the contents of electrolyte vessels to keep the electrolyte composition and separation conditions as constant as possible.
Collapse
Affiliation(s)
- Andrea Vojs Staňová
- Department of Analytical Chemistry, Faculty of Natural Science, Comenius University in Bratislava, Mlynská Dolina CH-2, 84215 Bratislava, Slovak Republic.
| | - Martina Hrenáková
- Department of Analytical Chemistry, Faculty of Natural Science, Comenius University in Bratislava, Mlynská Dolina CH-2, 84215 Bratislava, Slovak Republic
| | - Jozef Marák
- Department of Analytical Chemistry, Faculty of Natural Science, Comenius University in Bratislava, Mlynská Dolina CH-2, 84215 Bratislava, Slovak Republic
| |
Collapse
|
12
|
Masár M, Bodor R, Troška P. Microchip capillary electrophoresis of nitrite and nitrate in cerebrospinal fluid. Methods Mol Biol 2015; 1274:31-42. [PMID: 25673480 DOI: 10.1007/978-1-4939-2353-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microchip capillary electrophoresis (MCE) is a relatively new analytical method requiring only small sample amounts, which is very favorable for the analysis of volume-limited biofluids. The practical use of MCE in bioanalysis is still restricted in terms of requirements for simplifying and/or concentrating sample pretreatment techniques. Here, we describe an MCE method for trace analysis of nitrite and nitrate, indicators of various neurological diseases, in cerebrospinal fluid (CSF). The complex CSF samples were simplified by solid-phase microextraction prior to an online combination of isotachophoresis with capillary zone electrophoresis performed on a microchip with coupled channels and a high-volume sample injection channel (9.9 μL). The method is suitable for rapid (total analysis time lasted 20 min), reproducible (0.6-2.4 % RSD for migration time), and sensitive (3-9 nM limits of detection) determinations of nitrite and nitrate in 15-50 times diluted CSF samples.
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovak Republic,
| | | | | |
Collapse
|
13
|
Kler PA, Sydes D, Huhn C. Column–coupling strategies for multidimensional electrophoretic separation techniques. Anal Bioanal Chem 2014; 407:119-38. [DOI: 10.1007/s00216-014-8099-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
14
|
Sequential Determination of Inorganic Cations and Anions in Cerebrospinal Fluid by Microchip Electrophoresis. Chromatographia 2014. [DOI: 10.1007/s10337-014-2711-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Danč L, Bodor R, Troška P, Horčičiak M, Masár M. Determination of metabolic organic acids in cerebrospinal fluid by microchip electrophoresis. Electrophoresis 2014; 35:2146-54. [PMID: 24431209 DOI: 10.1002/elps.201300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/11/2013] [Accepted: 12/24/2013] [Indexed: 11/10/2022]
Abstract
A new MCE method for the determination of oxalic, citric, glycolic, lactic, and 2- and 3-hydroxybutyric acids, indicators of some metabolic and neurological diseases, in cerebrospinal fluid (CSF) was developed. MCE separations were performed on a PMMA microchip with coupled channels at lower pH (5.5) to prevent proteins interference. A double charged counter-ion, BIS-TRIS propane, was very effective in resolving the studied organic acids. The limits of detection (S/N = 3) ranging from 0.1 to 1.6 μM were obtained with the aid of contact conductivity detector implemented directly on the microchip. RSDs for migration time and peak area of organic acids in artificial and CSF samples were <0.8 and <9.7%, respectively. Recoveries of organic acids in untreated CSF samples on the microchip varied from 91 to 104%. Elimination of chloride interference, a major anionic constituent of CSF, has been reached by two approaches: (i) the use of coupled channels microchip in a column switching mode when approximately 97-99% of chloride was removed electrophoretically in the first separation channel and (ii) the implementation of micro-SPE with silver-form resin prior to the MCE analysis, which selectively removed chloride from undeproteinized CSF samples.
Collapse
Affiliation(s)
- Ladislav Danč
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
16
|
Troška P, Chudoba R, Danč L, Bodor R, Horčičiak M, Tesařová E, Masár M. Determination of nitrite and nitrate in cerebrospinal fluid by microchip electrophoresis with microsolid phase extraction pre-treatment. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 930:41-7. [DOI: 10.1016/j.jchromb.2013.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
17
|
Smejkal P, Bottenus D, Breadmore MC, Guijt RM, Ivory CF, Foret F, Macka M. Microfluidic isotachophoresis: A review. Electrophoresis 2013; 34:1493-509. [DOI: 10.1002/elps.201300021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Petr Smejkal
- ACROSS and School of Chemistry; University of Tasmania; Hobart; Australia
| | - Danny Bottenus
- Voiland School of Chemical Engineering and Bioengineering; Washington State University; Pullman; WA; USA
| | | | - Rosanne M. Guijt
- ACROSS and School of Pharmacy; University of Tasmania; Hobart; Australia
| | - Cornelius F. Ivory
- Voiland School of Chemical Engineering and Bioengineering; Washington State University; Pullman; WA; USA
| | - František Foret
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v.v.i., Brno; Czech Republic
| | - Mirek Macka
- ACROSS and School of Chemistry; University of Tasmania; Hobart; Australia
| |
Collapse
|
18
|
Masár M, Kruk P, Luc M, Bodor R, Danč L, Troška P. CZE study on adsorption processes of aliphatic and aromatic amines on PMMA chip. Electrophoresis 2013; 34:432-40. [DOI: 10.1002/elps.201200395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovakia
| | - Pavol Kruk
- Department of Analytical Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovakia
| | - Milan Luc
- Department of Analytical Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovakia
| | - Róbert Bodor
- Department of Analytical Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovakia
| | - Ladislav Danč
- Department of Analytical Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovakia
| | - Peter Troška
- Department of Analytical Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovakia
| |
Collapse
|
19
|
Marák J, Staňová A, Vaváková V, Hrenáková M, Kaniansky D. On-line capillary isotachophoresis–capillary zone electrophoresis analysis of bromate in drinking waters in an automated analyzer with coupled columns and photometric detection. J Chromatogr A 2012; 1267:252-8. [DOI: 10.1016/j.chroma.2012.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
20
|
Horčičiak M, Masár M, Bodor R, Danč L, Bel P. Trace analysis of glyphosate in water by capillary electrophoresis on a chip with high sample volume loadability. J Sep Sci 2012; 35:674-80. [PMID: 22271676 DOI: 10.1002/jssc.201100942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/25/2023]
Abstract
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well.
Collapse
Affiliation(s)
- Michal Horčičiak
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
21
|
Masár M, Bomastyk B, Bodor R, Horčičiak M, Danč L, Troška P, Kuss HM. Determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0788-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Some theoretical and practical aspects in the separation of humic substances by combined liquid chromatography methods. J Chromatogr A 2011; 1218:8946-57. [PMID: 21788022 DOI: 10.1016/j.chroma.2011.06.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022]
Abstract
Permanent need to understand nature, structure and properties of humic substances influences also separation methods that are in a wide scope used for fractionation, characterization and analysis of humic substances (HS). At the first glance techniques based on size-exclusion phenomena are the most useful and utilized for relating elution data to the molecular mass distribution of HS, however, with some limitations and exceptions, respectively, in the structural investigation of HS. The second most abundant separation mechanism is reversed-phase based on weak hydrophobic interactions beneficially combined with the step gradients inducing distinct features in rather featureless analytical signal of HS. Relatively great effort is invested to the developments of immobilized-metal affinity chromatography mimicking chelate-forming properties of HS as ligands in the environment. Surprisingly, relatively less attention is given to the ion-ion interactions based ion-exchange chromatography of HS. Chromatographic separation methods play also an important role in the examination of interactions of HS with pesticides. They allow us to determine binding constants and the other data necessary to predict the mobility of chemical pollutants in the environment. HS is frequently adversely acting in analytical procedures as interfering substance, so more detailed information is desired on manifestation of its numerous properties in analytical procedures. The article topic is covered by the review emphasizing advances in the field done in the period of last 10 years from 2000 till 2010.
Collapse
|
23
|
Luc M, Kruk P, Masár M. Determination of ammonium in wastewaters by capillary electrophoresis on a column-coupling chip with conductivity detection. J Sep Sci 2011; 34:1561-7. [DOI: 10.1002/jssc.201100201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/29/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
|
24
|
Floris A, Staal S, Lenk S, Staijen E, Kohlheyer D, Eijkel J, van den Berg A. A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood. LAB ON A CHIP 2010; 10:1799-806. [PMID: 20532263 DOI: 10.1039/c003899g] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present the Medimate Multireader, the first point-of-care lab on a chip device that is based on capillary electrophoresis. It employs disposable pre-filled microfluidic chips with closed electrode reservoirs and a single sample opening. Several technological innovations allow operation with closed reservoirs, which is essential for reliable point-of-care operation. The chips are inserted into a hand-held analyzer. In the present application, the device is used to measure the lithium concentration in blood. Lithium is quantified by conductivity detection after separation from other blood ions. Measurements in patients show good accuracy and precision, and there is no difference between the results obtained by skilled and non-skilled operators. This point-of-care device shows great promise as a platform for the determination of ionic substances in diagnostics or environmental analysis.
Collapse
|
25
|
Shiryaeva EV, Vladimirov VA, Zhukov MY. Theory of rotating electrohydrodynamic flows in a liquid film. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041603. [PMID: 19905317 DOI: 10.1103/physreve.80.041603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/15/2009] [Indexed: 05/28/2023]
Abstract
The mathematical model of rotating electrohydrodynamic flows in a thin suspended liquid film is proposed and studied. The flows are driven by the given difference of potentials in one direction and constant external electric field E(out) in another direction in the plane of a film. To derive the model, we employ the spatial averaging over the normal coordinate to a film that leads to the average Reynolds stress that is proportional to |E(out)|3. This stress generates tangential velocity in the vicinity of the edges of a film that, in turn, causes the rotational motion of a liquid. The proposed model is used to explain the experimental observations of the liquid film motor.
Collapse
Affiliation(s)
- E V Shiryaeva
- Department of Mathematics, Mechanics and Computer Science, Southern Federal University, 344090 Rostov-on-Don, Russia.
| | | | | |
Collapse
|
26
|
Abstract
We review microfluidic devices designed for multidimensional sample analysis, with a primer on relevant theory, an emphasis on protein analysis, and an eye towards future improvements and challenges to the field. Image shows results of an on-chip IEF-CE separation of a protein mixture; unpublished surface plot data from A. E. Herr.
Collapse
Affiliation(s)
- Samuel Tia
- Department of Bioengineering, University of California, Berkeley, 308B Stanley Hall, MC # 1762 Berkeley, CA 94720-1762, USA
| | | |
Collapse
|
27
|
Determination of ammonium, calcium, magnesium, potassium and sodium in drinking waters by capillary zone electrophoresis on a column-coupling chip. J Chromatogr A 2009; 1216:6252-5. [PMID: 19616216 DOI: 10.1016/j.chroma.2009.06.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/16/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
This work deals with simultaneous determination of ammonium, calcium, magnesium, sodium and potassium in drinking waters by capillary zone electrophoresis (CZE) on a column-coupling (CC) chip with suppressed hydrodynamic and electroosmotic transports. CZE separations were carried out in a propionate background electrolyte at a low pH (3.2) containing 18-crown-6-ether (18-crown-6) to reach a complete resolution of the cations. In addition, triethylenetetramine (TETA) coated the inner wall surface of the chip channels. The concentration limits of detection (cLOD) for the studied cations ranged from 4.9 to 11.5 microg/l concentrations using a 900 nl volume of the sample injection channel. 93-106% recoveries of the cations in drinking waters indicate a good predisposition of the present method to provide accurate analytical results.
Collapse
|
28
|
Tomás R, Klepárník K, Foret F. Multidimensional liquid phase separations for mass spectrometry. J Sep Sci 2008; 31:1964-79. [PMID: 18615817 DOI: 10.1002/jssc.200800113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Large part of the current research in biology, medicine, and biotechnology depends on the analysis of DNA (genomics), proteins (proteomics), or metabolites (metabolomics). The advances in biotechnology also command development of adequate analytical instrumentation capable to analyze minute amounts of samples. The analysis of the content of single cells may serve as an example of ultimate analytical applications. Most of the separation techniques have been developed in the last three decades and alternative approaches are being investigated. At present, the main protocols for analyses of complex mixtures include 2-DE (IEF) followed by electrophoresis in SDS polyacrylamide gel (SDS-PAGE) and chromatographic techniques. Information-rich techniques such as MS and NMR are essential for the identification and structure analysis of the analyzed compounds. High resolution separation of the individual sample components is often a prerequisite for success. High resolution proteomic analysis in the majority of laboratories still relies on the time consuming and laborious offline methods. This review highlights some of the important aspects of 2-D separations including microfluidics.
Collapse
Affiliation(s)
- Roman Tomás
- Institute of Analytical Chemistry, Brno, Czech Republic
| | | | | |
Collapse
|
29
|
Kvasnicka F. Application of CE in hydrodynamically closed systems for analysis of bioactive compounds in food. Electrophoresis 2007; 28:3581-9. [PMID: 17893940 DOI: 10.1002/elps.200700177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CE is a family of electrokinetic separation techniques that separate compounds based upon differences in electrophoretic mobilities, phase partitioning, pI, molecular size, or a combination of one or several of these properties. CE has been used in several modes to analyze and characterize a wide variety of analytes from simple inorganic ions, small organic molecules, peptides, proteins, nucleic acids to virus, microbes and particles. Food consists of a complex mixture of a variety of components, many of which are biologically active. Components classified as "nutrients" are essential for growth, maintenance, and repair of the body. Other food constituents, typically occurring in small quantities, are classified as "biologically active substances" and they have beneficial or harmful effects on human health. There are two types of biologically active substances in food - naturally occurring and food additives. The bioactive compounds of food that will be mentioned in this review are inorganic and organic acids, amino acids, vitamins, phenolic compounds, biogenic amines, antinutrients, toxins, etc. This review is focused on the application of CE with hydrodynamically closed system (suppression of EOF) for the analysis of the above-mentioned compounds. CE can be an alternative method to HPLC or other methods for analysis of bioactive compounds in food. The main advantages of CE are low running cost (at least ten times than HPLC) and consideration to environment (hundreds of microliters of diluted water based electrolyte per analysis).
Collapse
Affiliation(s)
- Frantisek Kvasnicka
- Department of Food Preservation and Meat Technology, Institute of Chemical Technology, Prague, Czech Republic.
| |
Collapse
|
30
|
Chang ST, Paunov VN, Petsev DN, Velev OD. Remotely powered self-propelling particles and micropumps based on miniature diodes. NATURE MATERIALS 2007; 6:235-40. [PMID: 17293850 DOI: 10.1038/nmat1843] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 01/10/2007] [Indexed: 05/13/2023]
Abstract
Microsensors and micromachines that are capable of self-propulsion through fluids could revolutionize many aspects of technology. Few principles to propel such devices and supply them with energy are known. Here, we show that various types of miniature semiconductor diodes floating in water act as self-propelling particles when powered by an external alternating electric field. The millimetre-sized diodes rectify the voltage induced between their electrodes. The resulting particle-localized electro-osmotic flow propels them in the direction of either the cathode or the anode, depending on their surface charge. These rudimentary self-propelling devices can emit light or respond to light and could be controlled by internal logic. Diodes embedded in the walls of microfluidic channels provide locally distributed pumping or mixing functions powered by a global external field. The combined application of a.c. and d.c. fields in such devices allows decoupling of the velocity of the particles and the liquid and could be used for on-chip separations.
Collapse
Affiliation(s)
- Suk Tai Chang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | | | | | |
Collapse
|
31
|
Abstract
ITP has been attracting constant attention for many years due to its principal capability to concentrate trace analytes by several orders of magnitude. In the current capillary format, it is able to concentrate trace analytes diluted to several microliters of an original sample into concentrated zones having volumes in the range of picoliters. Due to this reason, ITP holds an important position in many current multistage and multidimensional separation schemes. This article links up previous reviews on the topic and summarizes the progress of analytical capillary ITP since 2002. Almost 100 papers are reviewed that include methodological novelties, instrumental aspects, and analytical applications. Papers using ITP and/or isotachophoretic principles as part of multistage and/or multidimensional separation schemes are also included.
Collapse
Affiliation(s)
- Petr Gebauer
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
32
|
Ma B, Zhou X, Wang G, Huang H, Dai Z, Qin J, Lin B. Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids. Electrophoresis 2006; 27:4904-9. [PMID: 17117378 DOI: 10.1002/elps.200600392] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A quartz microchip integrated isotachophoretic (ITP) preconcentration with zone electrophoresis (ZE) separation was fabricated using a novel multi-point pressure method featured in normal temperature and lower pressure during bonding process. ITP followed by subsequential ZE of two flavonoids, quercetin and isorhamnetin on the microchip was performed consecutively on the homemade microfluidic workstation with UV detection, resulting in a decreased detectable concentration of 32-fold, compared to the ZE mode only, and their detection limits decreased down to 0.2 microg/mL and 1.2 microg/mL, respectively.
Collapse
Affiliation(s)
- Bo Ma
- Dalian Institute of Chemical Physics, Graduate School of Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Petr J, Maier V, Horáková J, Sevcík J, Stránský Z. Capillary isotachophoresis from the student point of view – images and the reality. J Sep Sci 2006; 29:2705-15. [PMID: 17305231 DOI: 10.1002/jssc.200600249] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A review of some fundamental aspects of ITP from the student point of view, imaginations of some basic facts and laws, use of ITP, and the recent trends are presented. The results of theoretical computations of ITP separation processes are added for comparison of imaginations with the exact mathematical description.
Collapse
Affiliation(s)
- Jan Petr
- Department of Analytical Chemistrý, Palackỳ University, Trída Svobody 8, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Feng HT, Law WS, Yu LJ, Li SFY. Transient ITP in Nonaqueous CE by Introducing Ions with a Long Hydrophobic Chain as Terminating Ions. Chromatographia 2006. [DOI: 10.1365/s10337-006-0779-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. Simultaneous determination of organic acids in beverages by capillary zone electrophoresis. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Chen L, Prest JE, Fielden PR, Goddard NJ, Manz A, Day PJR. Miniaturised isotachophoresis analysis. LAB ON A CHIP 2006; 6:474-87. [PMID: 16572209 DOI: 10.1039/b515551g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The application of miniaturized total analysis systems (microTAS) has seen rapid development over the past few years. Isotachophoresis (ITP) has been transferred into microchip format for both electrophoretic separation and pretreatment purposes, due to its advantageous features including separation parameters controlled by electrolyte composition and high sample load capacity. The primary focus of this concise review is to summarize the basic features of microchip based ITP and its applications to the analysis and pretreatment of ionic compounds and biomolecules that have arisen since 1998.
Collapse
Affiliation(s)
- Lin Chen
- Institute for Analytical Sciences, Bunsen-Kirchhoff Str. 11, D-44139 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Masár M, Danková M, Olvecká E, Stachurová A, Kaniansky D, Stanislawski B. Determination of total sulfite in wine. J Chromatogr A 2005; 1084:101-7. [PMID: 16114242 DOI: 10.1016/j.chroma.2004.08.134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work deals with the determination of total sulfite in wine. The determination combines an in-sample hydrogen peroxide oxidation of total sulfite in alkalized wine to sulfate with the separation and quantitation of the latter anion by zone electrophoresis (ZE) on-line coupled with isotachophoresis (ITP) on a column-coupling chip. Sample clean up, integrated into the ITP-ZE separation, eliminated wine matrix in an extent comparable to that provided by a highly selective distillation isolation of sulfite. At the same time, conductivity detection, employed to the detection of sulfate in the ZE stage of the ITP-ZE combination, provided for sulfate the concentration limit of detection corresponding to a 90 microg/l concentration of sulfite in the loaded sample (0.9 microl). Such a detectability allowed a reproducible quantitation of total sulfite when its concentration in wine was 15 mg/l. Formaldehyde binding of free sulfite in wine, included into the pre-column sample preparation, prevented an uncontrolled oxidation of this sulfite form. This step contributed to an unbiased determination of sulfate present in the original wine sample (this determination corrected for the concentration of sulfate determined in the sample after the peroxide oxidation of sulfite to the value equivalent to the total sulfite). The 99-101% recoveries of sulfite, determined for appropriately spiked wine samples, indicate a very good accuracy of the present method. Such a statement also supports excellent agreements of the results of quantitation based on the in-sample peroxide oxidation of the total sulfite (bound sulfite released at a high pH) with those in which this analyte was isolated from wine by distillation (bound sulfite released at a very low pH).
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina CH-2, SK-84215 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
38
|
Kubán P, Hauser PC. Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis. Electrophoresis 2005; 26:3169-78. [PMID: 16047312 DOI: 10.1002/elps.200500178] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quantitative total ionic analysis of alcoholic and nonalcoholic beverages was performed by microchip capillary electrophoresis with external contactless conductivity detection. An electrolyte solution consisting of 10.5 mM histidine, 50 mM acetic acid, and 2 mM 18-crown-6 at pH 4.1 was used for the determination of NH(4) (+), K(+), Ca(2+), Na(+), and Mg(2+). Fast analysis of Cl(-), NO(3) (-), and SO(4) (2-) was achieved in 20 mM 2-(N-morpholino)ethanesulfonic acid /histidine electrolyte solution at pH 6.0 and the simultaneous separation of up to 12 inorganic and organic anions was performed in a solution containing 10 mM His and 7 mM glutamic acid at pH 5.75. Limits of detection ranged from 90 to 250 mug/L for inorganic cations and anions, and from 200 to 2000 mug/L for organic anions and phosphate. Calibration curves showed linear dependencies over one to two orders of magnitude when the stacking effect was minimized by injecting standard solutions prepared in background electrolyte solutions. Total analysis times of 35 and 90 s were achieved for the determination of 5 inorganic cations and for the simultaneous determination of 12 inorganic and organic anions, respectively, which represents a considerable reduction of analysis time compared to conventional separation methods used in food analysis.
Collapse
Affiliation(s)
- Pavel Kubán
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4004 Basel, Switzerland
| | | |
Collapse
|
39
|
Masár M, Wójcik L, Kaniansky D, Trojanowicz M. Zone electrophoresis separation of perfluorocarboxylic acids on a chip with conductivity detection. J Sep Sci 2005; 28:1271-7. [PMID: 16138678 DOI: 10.1002/jssc.200500187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perfluorinated carboxylic acids (PFCAs), amphiphiles of anthropogenic origin, are spread worldwide throughout the environment. This work deals with their zone electrophoresis (ZE) separation on a chip with coupled columns and integrated conductivity detection. Analogies with the electrophoretic behavior of PFCAs and fatty acids were employed in a search for electrolyte conditions suitable for their separation. ZE separations in the water-ethanol electrolyte systems, based on differences in the ionic mobilities of the anions of PFCAs, provided favorable resolution and detection conditions of the homologues containing up to 10 carbon atoms in the alkyl chain. Concentration limits of detection of 0.3-6.5 micromol/L were attained for PFCAs (loaded by a 900 nL volume sample injection channel of the chip) under these separation conditions. The material of which the chip was made [poly(methylmethacrylate)] restricted its use in investigations of the separations of higher PFCA homologues as it was damaged by ethanolic and/or methanolic background electrolyte solutions required in experiments with these amphiphilic compounds.
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
40
|
Madajová V, Simunicová E, Kaniansky D, Marák J, Zelenská V. Fractionation of glycoforms of recombinant human erythropoietin by preparative capillary isotachophoresis. Electrophoresis 2005; 26:2664-73. [PMID: 15929059 DOI: 10.1002/elps.200500044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This feasibility study deals with the use of preparative capillary isotachophoresis (CITP), operating in a discontinuous fractionation mode, to the separations and isolations of glycoforms of recombinant human erythropoietin (rhEPO). The preparative CITP separations were monitored by capillary zone electrophoresis (CZE) with a hydrodynamically closed separation unit. Such a CZE system, suppressing fluctuations of the migration data linked with fluctuations of EOF and hydrodynamic flow, made possible to evaluate and compare the preparative CITP separations performed within a longer time frame. Preparative CITP, carried out in the separation unit with coupled columns of enhanced sample loadability, separating 100 microg of rhEPO in a run lasting ca. 30 min, gave the production rate higher than 55 ng/s for the rhEPO glycoforms. The preparative separations included valve isolations of the glycoforms from the ITP stack into four or six fractions. Such numbers of the fractions corresponded to typical numbers of the major glycoform peaks as resolved in CZE of rhEPO. With respect to close effective mobilities of the glycoforms and a multicomponent nature of rhEPO, the fractions contained mixtures of glycoforms with the dominant glycoforms enriched 10-100-fold, relative to the original rhEPO sample.
Collapse
Affiliation(s)
- Vlasta Madajová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
41
|
Xu Z, Nakamura Y, Hirokawa T. Impact of reservoir potentials on the analyte behavior in microchip electrophoresis: computer simulation and experimental validation for DNA fragments. Electrophoresis 2005; 26:383-90. [PMID: 15657886 DOI: 10.1002/elps.200410151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fundamental understanding of the impact of reservoir potentials on the analyte behavior on the microfluidic chips is an important issue in microchip electrophoresis (MCE) for suitable injection and separation of analytes, since the applied potentials may significantly affect the shape of sample plug, sample leakage from the injection channel to the separation channel, injected sample amount, and separation efficiency. This study addressed this issue for the case of a conventional cross-geometry microchip with four reservoirs using computer simulations, the results of which were verified by the analysis of DNA fragments. For the microchip with a definite structure and migration distance, the injected sample amount was shown to be the vital parameter for improving the limit of detection and resolution. During injection, the shape of the sample plug could be adjusted by varying the reservoir potentials. It was demonstrated that a "magnified injection" (applying high voltage on the three reservoirs to the sample reservoir) is useful to enhance the detection sensitivity depending on the analyte composition, although such injection was previously avoided because of introducing too large amounts of the analyte in comparison with two established modes, floating and pinched injection. Optimal magnified injection was proved to improve the sensitivity for about 4 times over that of pinched injection for the analysis of DNA step ladders using microchip gel electrophoresis (MCGE). Sample leakage of DNA fragments could be suppressed by applying a high positive voltage on injection channel during separation, but the voltage degraded the injected amount and resolution.
Collapse
Affiliation(s)
- Zhongqi Xu
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-hiroshima, Japan
| | | | | |
Collapse
|
42
|
Masár M, Poliaková K, Danková M, Kaniansky D, Stanislawski B. Determination of organic acids in wine by zone electrophoresis on a chip with conductivity detection. J Sep Sci 2005; 28:905-14. [PMID: 16013816 DOI: 10.1002/jssc.200500061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An appropriate combination of separation mechanisms (simultaneous use of differences in pK values, host-guest complexations, and the ionic strength dependences of the actual ionic mobilities) provided zone electrophoresis (ZE) resolution of 22 organic and inorganic acids expected in wines on a polymethylmethacrylate (PMMA) chip with integrated conductivity detection. These separating conditions offered a framework for the ZE determination of organic acids responsible for some important organoleptic characteristics of wines (tartrate, malate, succinate, acetate, citrate, and lactate). The ZE procedure developed in this context is simple and rapid (ca. 10 minutes' analysis time), while affording reproducible migration and quantitation data for the acids. For example, 0.8-2.0% RSD values characterized the migration times of the acids for 25 repeated ZE runs with the same sample carried out in 5 days in the background electrolyte solution prepared freshly on a daily basis, while 3-5% RSD values were typical for the accompanying peak area data. The concentration ranges within which the acids of analytical interest could be determined in one ZE run covered all wine samples included in our study (100-400-fold sample dilutions were needed to work under the conditions corresponding to the validities of the calibration data). 90-110% recoveries of the acids as obtained repeatedly for one of the reference wine samples used in our experiments indicate a good predisposition of the present method to provide accurate analytical results. This statement also supports the results from the determination of the acids in reference wine samples with claimed concentrations of malic (five samples), tartaric (one sample), and lactic (one sample) acids.
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina CH-2, SK-84215 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
43
|
HARADA M, KIDO TO, OKADA T. Simulation of Separation Process with Laminar Flow in an Open Capillary. BUNSEKI KAGAKU 2005. [DOI: 10.2116/bunsekikagaku.54.1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Makoto HARADA
- Department of Chemistry, Tokyo Institute of Technology
| | - Tomo-o KIDO
- Department of Chemistry, Tokyo Institute of Technology
| | - Tetsuo OKADA
- Department of Chemistry, Tokyo Institute of Technology
| |
Collapse
|
44
|
Masár M, Danková M, Olvecká E, Stachurová A, Kaniansky D, Stanislawski B. Determination of free sulfite in wine by zone electrophoresis with isotachophoresis sample pretreatment on a column-coupling chip. J Chromatogr A 2004; 1026:31-9. [PMID: 14763730 DOI: 10.1016/j.chroma.2003.11.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This work deals with the determination of free sulfite in wine by zone electrophoresis (ZE) with on-line isotachophoresis (ITP) sample pretreatment on a column-coupling (CC) chip with conductivity detection. A rapid pre-column conversion of sulfite to hydroxymethanesulfonate (HMS), to minimize oxidation losses of the analyte, was included into the developed analytical procedure, while ITP and ZE were responsible for specific analytical tasks in the separations performed on the CC chip. ITP, for example, eliminated the sample matrix from the separation compartment and, at the same time, provided a selective concentration of HMS before its transfer to the ZE stage of the separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions favoring a sensitive conductivity detection of HMS. In this way, ITP and ZE cooperatively contributed to a 900 microg/l concentration detectability for sulfite as attained for a 60 nl load of wine (a 15-fold wine dilution and the use of a 0.9 microl sample injection channel of the chip) and, consequently, to the determination of free sulfite when this was present in wine at the concentrations as low as 3 mg/l. The separations were carried out in a closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, made a frame for precise migration and quantitation data as achieved for HMS in both the model and wine samples. Ninety percent recoveries, as typically obtained for free sulfite in wine samples, indicate promising potentialities of the present method as far as the accuracies of the provided analytical results are concerned.
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina CH-2, SK-84215 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
45
|
Guijt RM, Evenhuis CJ, Macka M, Haddad PR. Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis 2004; 25:4032-57. [PMID: 15597418 DOI: 10.1002/elps.200406156] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since the introduction of capillary electrophoresis (CE), conductivity detection has been an attractive means of detection. No additional chemical properties are required for detection, and no loss in sensitivity is expected when miniaturising the detector to scale with narrow-bore capillaries or even to the microchip format. Integration of conductivity and CE, however, involves a challenging combination of engineering issues. In conductivity detection the resistance of the solution is most frequently measured in an alternating current (AC) circuit. The influence of capacitors both in series and in parallel with the solution resistance should be minimised during conductivity measurements. For contact conductivity measurements, the positioning and alignment of the detection electrodes is crucial. A contact conductivity detector for CE has been commercially available, but was withdrawn from the market. Microfabrication technology enables integration and precise alignment of electrodes, resulting in the popularity of conductivity detection in microfluidic devices. In contactless conductivity detection, the alignment of the electrodes with respect to the capillary is less crucial. Contactless conductivity detection (CCD) was introduced in capillary CE, and similar electronics have been applied for CCD using planar electrodes in microfluidic devices. A contactless conductivity detector for capillaries has been commercialised recently. In this review, different approaches towards conductivity detection in capillaries and chip-based CE are discussed. In contrast to previous reviews, the focus of the present review is on the technological developments and challenges in conductivity detection in CE.
Collapse
Affiliation(s)
- Rosanne M Guijt
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, School of Chemistry, Hobart, TAS, Australia
| | | | | | | |
Collapse
|
46
|
Abstract
This review as a sequel of three earlier similar reports gives a summary of the progress and significant methodological developments, starting from 2002, in the use of capillary electrophoresis (CE) for inorganic ion analysis. As substantiated by the illustrative number of relevant references, improvements in sensitivity achieved both in and outside a CE system, advances in manipulating the separation selectivity, novel hardware configurations, and system performance innovations are continually being reported over the review period. Specifically viewed are the recent advancements in elemental (bio)speciation analysis, which remains one of the most fertile areas of CE research, as well as in three recently booming research topics: contactless conductivity detection, separations on microchips, and transient isotachophoretic preconcentration. A state-of-the-art picture of technique's potentialities within the field of interest presented here demonstrates that CE has become recognized and is growing in acceptance as a reliable alternative to traditional analytical methods such as high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
47
|
Olvecká E, Kaniansky D, Pollák B, Stanislawski B. Separation of proteins by zone electrophoresis on-line coupled with isotachophoresis on a column-coupling chip with conductivity detection. Electrophoresis 2004; 25:3865-74. [PMID: 15565671 DOI: 10.1002/elps.200406080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This feasibility study deals with the separations of proteins by an on-line combination of zone electrophoresis (ZE) with isotachophoresis (ITP) on a poly(methylmethacrylate) column-coupling (CC) chip with integrated conductivity detection. ITP and ZE provided specific analytical functions while performing the cationic mode of the separation. ITP served, mainly, for concentrations of proteins and its concentrating power was beneficial in reaching a low dispersion transfer (injection) of the proteinous constituents, loaded on the CC chip in a 960 nL volume, into the ZE separation stage. This was complemented by an electrophoretically driven removal of the sample constituents migrating in front of the focused proteins from the separation system before the ZE separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions providing the resolutions and sensitive conductivity detections of the test proteins. In this way, ITP and ZE cooperatively contributed to low- or sub-microg/mL concentration detectabilities of proteins and their quantitations at 1-5 microg/mL concentrations. However, a full benefit in concentration detectabilities of proteins, expected from the use of the ITP-ZE combination, was not reached in this work. Small adsorption losses of proteins and detection disturbances in the ZE stage of separation, very likely due to trace constituents concentrated by ITP, appear to set limits in the detection of proteins in our experiments. The ITP-ZE separations were carried out in a hydrodynamically closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows of the electrolyte solutions. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, undoubtedly contributed to highly reproducible migrations of the separated proteins (fluctuations of the migration time of a particular protein were typically 0.5% RSD in repeated ITP-ZE runs).
Collapse
Affiliation(s)
- Eva Olvecká
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
48
|
Evenhuis CJ, Guijt RM, Macka M, Haddad PR. Determination of inorganic ions using microfluidic devices. Electrophoresis 2004; 25:3602-24. [PMID: 15565711 DOI: 10.1002/elps.200406120] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The separation and detection of inorganic ions on microfluidic devices has received little attention since the 'lab-on-a-chip' concept has revolutionised the field of electrokinetically driven analysis. This review presents a summary and discussion of the published literature on inorganic analysis using microfluidic devices and includes sections on electromigration separation methods, namely isotachophoresis (ITP), capillary electrophoresis (CE), and hyphenated ITP-CE, together with a brief account of flow injection analysis. The review concludes with the authors' perspective on future directions for inorganic analysis on microfluidic devices.
Collapse
Affiliation(s)
- Christopher J Evenhuis
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | |
Collapse
|
49
|
Baldock SJ, Fielden PR, Goddard NJ, Kretschmer HR, Prest JE, Treves Brown BJ. Novel variable volume injector for performing sample introduction in a miniaturised isotachophoresis device. J Chromatogr A 2004; 1042:181-8. [PMID: 15296404 DOI: 10.1016/j.chroma.2004.05.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A microdevice design furnished with a novel sample injector, capable of delivering variable volume samples, for miniaturised isotachophoretic separations is presented. Micromachining by direct milling was used to realise two flow channel network designs on poly(methyl methacrylate) chips. Both designs comprised a wide bore sample channel interfaced, via a short connection channel, to a narrow bore separation channel. Superior injection performance was observed with a connection channel angled at 45 degrees to the separation channel compared to a device using a channel angled at 90 degrees. Automated delivery of electrolytes to the microdevice was demonstrated with both hydrostatic pumping and syringe pumps; both gave reproducible sample injection. A range of different sampling strategies were investigated. Isotachophoretic separations of model analytes (metal ions and an anionic dye) demonstrated the potential of the device. Separations of ten metal cations were achieved in under 475 s.
Collapse
Affiliation(s)
- S J Baldock
- Department of Instrumentation and Analytical Science, UMIST, PO Box 88, Manchester M60 1QD, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Huang HC, Lin CI, Joseph AK, Lee YD. Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications. J Chromatogr A 2004; 1027:263-8. [PMID: 14971511 DOI: 10.1016/j.chroma.2003.08.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A voltammetric sensor for albuterol was investigated where we combined the techniques of microfabrication and molecular imprinting to construct on-chip devices using photoirradiation of cross-linkable polymers. Molecularly imprinted polymer was coated as a thin film onto the gold working electrode on chip and the analyte was directly quantified by differential pulse voltammetric measurements.
Collapse
Affiliation(s)
- Hui Chi Huang
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 30043, Taiwan
| | | | | | | |
Collapse
|