1
|
Khatri K, Klein JA, Haserick JR, Leon DR, Costello CE, McComb ME, Zaia J. Microfluidic Capillary Electrophoresis-Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides. Anal Chem 2017; 89:6645-6655. [PMID: 28530388 PMCID: PMC5554952 DOI: 10.1021/acs.analchem.7b00875] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycomics and glycoproteomics analyses by mass spectrometry require efficient front-end separation methods to enable deep characterization of heterogeneous glycoform populations. Chromatography methods are generally limited in their ability to resolve glycoforms using mobile phases that are compatible with online liquid chromatography-mass spectrometry (LC-MS). The adoption of capillary electrophoresis-mass spectrometry methods (CE-MS) for glycomics and glycoproteomics is limited by the lack of convenient interfaces for coupling the CE devices to mass spectrometers. Here, we describe the application of a microfluidics-based CE-MS system for analysis of released glycans, glycopeptides and monosaccharides. We demonstrate a single CE method for three different modalities, thus contributing to comprehensive glycoproteomics analyses. In addition, we explored compatible sample derivatization methods. We used glycan TMT-labeling to improve electrophoretic migration and enable multiplexed quantitation by tandem MS. We used sialic acid linkage-specific derivatization methods to improve separation and the level of information obtained from a single analytical step. Capillary electrophoresis greatly improved glycoform separation for both released glycans and glycopeptides over that reported for chromatography modes more frequently employed for such analyses. Overall, the CE-MS method described here enables rapid setup and analysis of glycans and glycopeptides using mass spectrometry.
Collapse
Affiliation(s)
- Kshitij Khatri
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Joshua A. Klein
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States
| | - John R. Haserick
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Deborah R. Leon
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Catherine E. Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark E. McComb
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Poly(N,N-Dimethylacrylamide)-Based Coatings to Modulate Electroosmotic Flow and Capillary Surface Properties for Protein Analysis. Methods Mol Biol 2016. [PMID: 27473485 DOI: 10.1007/978-1-4939-4014-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Capillary electrophoresis (CE) is one of the most powerful techniques for the separation of biomolecules. However, the separation efficiency of proteins in CE is often compromised by their tendency to interact with the silanol groups on the surface of the inner capillary and by an uncontrolled electroosmotic flow. Herein, we report on the use of novel hydrophilic polymeric coatings that can modulate the properties of the capillary walls. The novelty of these poly(N,N-dimethylacrylamide)-based copolymers relies on the simultaneous presence of chemically reactive groups (N-acryloyloxysuccinimide and glycidyl methacrylate) and silane groups in the backbone, which results in highly stable films due to the covalent reaction between the polymer and the glass silanols. A careful optimization of monomer concentration confers anti-fouling properties to the polymer coatings, and thus allows for highly efficient acidic and alkaline protein separations. Furthermore, the presence of these monomers makes it possible to modulate the electroosmotic flow from negligible to reduced values, depending on the desired application.
Collapse
|
3
|
Mokaddem M, d'Orlyé F, Varenne A. Online Capillary IsoElectric Focusing-ElectroSpray Ionization Mass Spectrometry (CIEF-ESI MS) in Glycerol-Water Media for the Separation and Characterization of Hydrophilic and Hydrophobic Proteins. Methods Mol Biol 2016; 1466:57-66. [PMID: 27473481 DOI: 10.1007/978-1-4939-4014-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary isoelectric focusing (CIEF) is a high-resolution technique for the separation of ampholytes, such as proteins, according to their isoelectric point. CIEF coupled online with MS is regarded as a promising alternative to 2-D PAGE for fast proteome analysis with high-resolving capabilities and enhanced structural information without the drawbacks of conventional slab-gel electrophoresis. However, online coupling has been rarely described, as it presents some difficulties. A new methodology for the online coupling of CIEF with electrospray ionization mass spectrometry (ESI-MS) has been developed in glycerol-water media. This new integrated methodology provides a mean for the characterization of a large number of hydrophilic and hydrophobic proteins.
Collapse
Affiliation(s)
- Meriem Mokaddem
- Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, 75005, France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, 75005, France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
| | - Fanny d'Orlyé
- Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, 75005, France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, 75005, France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
| | - Anne Varenne
- Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France.
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, 75005, France.
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, 75005, France.
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France.
| |
Collapse
|
4
|
Neuberger S, Rafai A, Neusüß C. Screening of Small Intact Proteins by Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CE-ESI-MS). Methods Mol Biol 2016; 1466:43-56. [PMID: 27473480 DOI: 10.1007/978-1-4939-4014-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary electrophoresis (CE) has been shown to be a suitable separation technique for complex samples. Combined with electrospray ionization-mass spectrometry (ESI-MS), it is a powerful tool offering the opportunity of high selectivity and sensitivity combined with the possibility to identify and characterize intact proteins. In this protocol, we demonstrate a screening method for intact proteins based on capillary zone electrophoresis (CZE) separation coupled with online mass spectrometric detection. In order to avoid protein-wall interactions, a neutral coated capillary is used to create a universal method for proteins with both low and high electrophoretic mobilities. In addition, we show the successful validation and application of this screening method for a set of eight standard proteins and the glycoprotein erythropoietin.
Collapse
Affiliation(s)
- Sabine Neuberger
- Department of Chemistry, Aalen University, Beethovenstraβe 1, Aalen, D-73430, Germany
| | | | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraβe 1, Aalen, D-73430, Germany.
| |
Collapse
|
5
|
Acunha T, Ibáñez C, Pascual Reguera MI, Sarò M, Navarro R, Alfonso Redondo J, Reinecke H, Gallardo A, Simó C, Cifuentes A. Potential of prodendronic polyamines with modulated segmental charge density as novel coating for fast and efficient analysis of peptides and basic proteins by CE and CE-MS. Electrophoresis 2015; 36:1564-71. [DOI: 10.1002/elps.201400576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Tanize Acunha
- Laboratory of Foodomics; Institute of Food Science Research (CIAL); CSIC; Campus de Cantoblanco Madrid Spain
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF Brazil
| | - Clara Ibáñez
- Laboratory of Foodomics; Institute of Food Science Research (CIAL); CSIC; Campus de Cantoblanco Madrid Spain
| | | | - Mariagiovanna Sarò
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Facoltà di Farmacia; Università degli Studi di Messina; Messina Italy
| | - Rodrigo Navarro
- Instituto de Ciencia y Tecnología de Polímeros; ICTP-CSIC; Madrid
| | | | - Helmut Reinecke
- Instituto de Ciencia y Tecnología de Polímeros; ICTP-CSIC; Madrid
| | - Alberto Gallardo
- Instituto de Ciencia y Tecnología de Polímeros; ICTP-CSIC; Madrid
| | - Carolina Simó
- Laboratory of Foodomics; Institute of Food Science Research (CIAL); CSIC; Campus de Cantoblanco Madrid Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics; Institute of Food Science Research (CIAL); CSIC; Campus de Cantoblanco Madrid Spain
| |
Collapse
|
6
|
Batz NG, Mellors JS, Alarie JP, Ramsey JM. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 2014; 86:3493-500. [PMID: 24655020 DOI: 10.1021/ac404106u] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.
Collapse
Affiliation(s)
- Nicholas G Batz
- Department of Chemistry, ‡Department of Biomedical Engineering, and §Carolina Center for Genome Sciences, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
7
|
Potential of polyE-323 coated capillaries for capillary electrophoresis of lipids. J Chromatogr A 2013; 1317:193-8. [DOI: 10.1016/j.chroma.2013.08.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023]
|
8
|
Hua Y, Jemere AB, Dragoljic J, Harrison DJ. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics. LAB ON A CHIP 2013; 13:2651-9. [PMID: 23712291 DOI: 10.1039/c3lc50401h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.
Collapse
Affiliation(s)
- Yujuan Hua
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | | | | | | |
Collapse
|
9
|
Liu JX, Zhao MZ, Deng Y, Tie C, Chen HX, Zhou YL, Zhang XX. The coating of smart pH-responsive polyelectrolyte brushes in capillary and its application in CE. Electrophoresis 2013; 34:1352-8. [PMID: 23436557 DOI: 10.1002/elps.201200518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/02/2013] [Accepted: 01/10/2013] [Indexed: 11/07/2022]
Abstract
A novel pH-responsive coating technique was developed and applied to CE successfully in this paper. The coating was formed by bonding mixed opposite charge poly(acrylic acid) and poly(2-vinylpyridine) randomly onto the inner wall of a silica capillary. The coating processes were first characterized by ellipsometry and atomic force microscopy at macroscale and microscale, respectively. Measurements of EOF were implemented to confirm the coating. Direction and velocity of EOF became controllable from negative to positive, showing a perfect sigmoidal curve as the coating net charges alternated by the pH of BGE. The control of the EOF makes it possible to analyze different kinds of small molecules, peptides, and proteins successfully in the same capillary. Results showed that the stability and reproducibility for separations of fluoroquinolone standards were satisfactory for more than a hundred separations. A series of basic and acidic protein standards were separated with admirable efficiency and minimal adsorption using both polarities. The separation of tryptic BSA digest showed that the prepared capillary has immense potential in analyzing a single sample with both acidic and basic separations, which achieved the expectation in proteomics study by CE-MS.
Collapse
Affiliation(s)
- Jing-Xin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry, Peking University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Moini M. High-throughput capillary electrophoresis-mass spectrometry: from analysis of amino acids to analysis of protein complexes. Methods Mol Biol 2013; 984:79-119. [PMID: 23386339 DOI: 10.1007/978-1-62703-296-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent advances in capillary electrophoresis-mass spectrometry (CE-MS) interfacing using porous tip is leading to commercialization of CE-MS with a sheathless interface for the first time. The new sheathless interface in conjunction with CE capillary coatings using self-coating background electrolytes (BGE) has significantly simplified CE-MS analysis of complex mixtures. CE-MS, with its high separation efficiency, compound identification capability, and ability to rapidly separate compounds with a wide range of mass and charge while consuming only nanoliters of samples, has become a valuable analytical technique for the analysis of complex biological mixtures. These advances have allowed a single capillary to analyze a range of compounds including amino acids, their D/L enantiomers, protein digests, intact proteins, and protein complexes. With these capabilities, CE-MS is poised to become the multipurpose tool of separation scientists. More recently, an eight-capillary CE in conjunction with an 8-inlet mass spectrometry has allowed 8 CE-MS analyses to be performed concurrently, significantly increasing throughput.
Collapse
MESH Headings
- Amino Acids/chemistry
- Amino Acids/isolation & purification
- Animals
- Coordination Complexes/chemistry
- Coordination Complexes/isolation & purification
- Crown Ethers
- Electrolytes/chemistry
- Electrophoresis, Capillary/instrumentation
- Electrophoresis, Capillary/methods
- Electrophoresis, Capillary/standards
- Erythrocytes/chemistry
- Humans
- Limit of Detection
- Metalloproteins/chemistry
- Metalloproteins/isolation & purification
- Multiprotein Complexes/isolation & purification
- Porosity
- Reference Standards
- Sequence Analysis, Protein
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Electrospray Ionization/standards
- Stereoisomerism
Collapse
Affiliation(s)
- Mehdi Moini
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA.
| |
Collapse
|
11
|
Polymerized phospholipid bilayers as permanent coatings for small amine separations using mixed aqueous/organic capillary zone electrophoresis. J Chromatogr A 2012; 1267:80-8. [DOI: 10.1016/j.chroma.2012.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/24/2022]
|
12
|
Modulation of electroosmotic flow in capillary electrophoresis using functional polymer coatings. J Chromatogr A 2012. [DOI: 10.1016/j.chroma.2012.10.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Advantages and limitations of a new cationic coating inducing a slow electroosmotic flow for CE-MS peptide analysis: a comparative study with commercial coatings. Anal Bioanal Chem 2012; 405:225-37. [DOI: 10.1007/s00216-012-6459-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 11/25/2022]
|
14
|
Chingin K, Astorga-Wells J, Pirmoradian Najafabadi M, Lavold T, Zubarev RA. Separation of Polypeptides by Isoelectric Point Focusing in Electrospray-Friendly Solution Using a Multiple-Junction Capillary Fractionator. Anal Chem 2012; 84:6856-62. [DOI: 10.1021/ac3013016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Konstantin Chingin
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
| | - Juan Astorga-Wells
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Biomotif AB, Stockholm,
Sweden
| | - Mohammad Pirmoradian Najafabadi
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Biomotif AB, Stockholm,
Sweden
| | | | - Roman A. Zubarev
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
15
|
Taichrib A, Pioch M, Neusüß C. Toward a screening method for the analysis of small intact proteins by CE-ESI-TOF MS. Electrophoresis 2012; 33:1356-66. [DOI: 10.1002/elps.201100620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Chambers AG, Ramsey JM. Microfluidic Dual Emitter Electrospray Ionization Source for Accurate Mass Measurements. Anal Chem 2012; 84:1446-51. [DOI: 10.1021/ac202603s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrew G. Chambers
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| | - J. Michael Ramsey
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| |
Collapse
|
17
|
Hargis AD, Alarie JP, Ramsey J. Characterization of cell lysis events on a microfluidic device for high-throughput single cell analysis. Electrophoresis 2011; 32:3172-9. [PMID: 22025127 PMCID: PMC3517164 DOI: 10.1002/elps.201100229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
A microfluidic device capable of rapidly analyzing cells in a high-throughput manner using electrical cell lysis is further characterized. In the experiments performed, cell lysis events were studied using an electron multiplying charge coupled device camera with high frame rate (>100 fps) data collection. It was found that, with this microfluidic design, the path that a cell follows through the electric field affects the amount of lysate injected into the analysis channel. Elimination of variable flow paths through the electric field was achieved by coating the analysis channel with a polyamine compound to reverse the electroosmotic flow (EOF). EOF reversal forced the cells to take the same path through the electric field. The improved control of the cell trajectory will reduce device-imposed bias on the analysis and maximizes the amount of lysate injected into the analysis channel for each cell, resulting in improved analyte detection capabilities.
Collapse
Affiliation(s)
- Amy D Hargis
- Department of Chemistry, Chapman Hall Room 251, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3216
| | - JP Alarie
- Department of Chemistry, Chapman Hall Room 251, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3216
| | - J.M. Ramsey
- Department of Chemistry, Chapman Hall Room 251, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3216
| |
Collapse
|
18
|
Faserl K, Sarg B, Kremser L, Lindner H. Optimization and Evaluation of a Sheathless Capillary Electrophoresis–Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:7297-305. [DOI: 10.1021/ac2010372] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Sun X, Kelly RT, Danielson WF, Agrawal N, Tang K, Smith RD. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization. Electrophoresis 2011; 32:1610-8. [PMID: 21520147 DOI: 10.1002/elps.201000522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/01/2010] [Accepted: 12/29/2010] [Indexed: 11/06/2022]
Abstract
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip CE separations. The PDMS devices used for the evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~ 100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure, and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to > 2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 10³ theoretical plates for the ~2.4-cm-long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations for multiplexing CE separations and for sample-limited bioanalyses are discussed.
Collapse
Affiliation(s)
- Xuefei Sun
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chambers AG, Mellors JS, Henley WH, Ramsey JM. Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device. Anal Chem 2011; 83:842-9. [PMID: 21214194 PMCID: PMC3059363 DOI: 10.1021/ac102437z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfluidic device capable of two-dimensional reversed-phase liquid chromatography-capillary electrophoresis with integrated electrospray ionization (LC-CE-ESI) for mass spectrometry (MS)-based proteomic applications is described. Traditional instrumentation was used for the LC sample injection and delivery of the LC mobile phase. The glass microfabricated device incorporated a sample-trapping region and an LC channel packed with reversed-phase particles. Rapid electrokinetic injections of the LC effluent into the CE dimension were performed at a cross-channel intersection. The CE separation channel terminated at a corner of the square device, which functioned as an integrated electrospray tip. In addition to LC-CE-ESI, this device was used for LC-ESI without any instrumental modifications. To evaluate the system, LC-MS and LC-CE-MS analyses of protein digests were performed and compared.
Collapse
MESH Headings
- Animals
- Cattle
- Chromatography, Reverse-Phase/instrumentation
- Chromatography, Reverse-Phase/methods
- Electrophoresis, Capillary/instrumentation
- Electrophoresis, Capillary/methods
- Escherichia coli/chemistry
- Microfluidic Analytical Techniques/instrumentation
- Microfluidic Analytical Techniques/methods
- Microscopy, Electron, Scanning
- Peptide Fragments/analysis
- Serum Albumin, Bovine/analysis
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
Collapse
Affiliation(s)
- Andrew G Chambers
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
21
|
Mischak H, Schanstra JP. CE-MS in biomarker discovery, validation, and clinical application. Proteomics Clin Appl 2010; 5:9-23. [DOI: 10.1002/prca.201000058] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 12/30/2022]
|
22
|
Haselberg R, de Jong GJ, Somsen GW. Capillary electrophoresis–mass spectrometry of intact basic proteins using Polybrene–dextran sulfate–Polybrene-coated capillaries: System optimization and performance. Anal Chim Acta 2010; 678:128-34. [DOI: 10.1016/j.aca.2010.08.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
23
|
Elhamili A, Wetterhall M, Sjödin M, Sebastiano R, Bergquist J. Analysis of peptides usingN-methylpolyvinylpyridium as silica surface modifier for CE-ESI-MS. Electrophoresis 2010; 31:1151-1156. [DOI: 10.1002/elps.200900536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Mellors JS, Jorabchi K, Smith LM, Ramsey JM. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 2010; 82:967-73. [PMID: 20058879 PMCID: PMC2836921 DOI: 10.1021/ac902218y] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microfabricated fluidic device was developed for the automated real-time analysis of individual cells using capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS). The microfluidic structure incorporates a means for rapid lysis of single cells within a free solution electrophoresis channel, where cellular constituents were separated, and an integrated electrospray emitter for ionization of separated components. The eluent was characterized using mass spectrometry. Human erythrocytes were used as a model system for this study. In this monolithically integrated device, cell lysis occurs at a channel intersection using a combination of rapid buffer exchange and an increase in electric field strength. An electroosmotic pump is incorporated at the end of the electrophoretic separation channel to direct eluent to the integrated electrospray emitter. The dissociated heme group and the alpha and beta subunits of hemoglobin from individual erythrocytes were detected as cells continuously flowed through the device. The average analysis throughput was approximately 12 cells per minute, demonstrating the potential of this method for high-throughput single cell analysis.
Collapse
Affiliation(s)
- J Scott Mellors
- Department of Chemistry, Chapman Hall Room 251, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3216, USA
| | | | | | | |
Collapse
|
25
|
Mokaddem M, Gareil P, Varenne A. Online CIEF-ESI-MS in glycerol-water media with a view to hydrophobic protein applications. Electrophoresis 2010; 30:4040-8. [PMID: 19960468 DOI: 10.1002/elps.200900091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new online coupling of CIEF with ESI-MS has been developed in glycerol-water media. This improved protocol provides: (i) the electric continuity during the whole analysis by a discontinuous filling of the capillary with 60:40 (cm/cm) catholyte/proteins-ampholyte mixture; (ii) the use of an anticonvective medium, i.e. 30:70 glycerol/water, v/v, compatible with MS detection and as an aid to hydrophobic protein solubilization and (iii) the use of unmodified bare fused-silica capillaries, as the glycerol/water medium strongly reduces EOF. Focusing was performed in positive polarity and cathodic mobilization was achieved by both voltage and pressure application. The setup was optimized with respect to analysis time, sensitivity and precision on pI determination. The optimized anolyte and catholyte were composed of 50 mM formic acid/1 mM glutamic acid (pH 2.35) and 100 mM NH(3)/1 mM lysine (pH 10.6), respectively. The effects of ampholyte concentration, focusing time and ESI parameters were presented for model proteins and discussed. This new integrated protocol should be an easy and effective additional tool in the field of proteome analysis, providing a means for the characterization of a large number of hydrophilic and hydrophobic proteins.
Collapse
Affiliation(s)
- Meriem Mokaddem
- Laboratoire de Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques, UMR CNRS-UPMC, Ecole Nationale Supérieure de Chimie de Paris, 75231 Paris, France
| | | | | |
Collapse
|
26
|
Gulcev MD, McGinitie TM, Bahnasy MF, Lucy CA. Surfactant bilayer coatings in narrow-bore capillaries in capillary electrophoresis. Analyst 2010; 135:2688-93. [DOI: 10.1039/c0an00279h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Bachmann S, Vallant R, Bakry R, Huck CW, Corradini D, Bonn GK. CE coupled to MALDI with novel covalently coated capillaries. Electrophoresis 2010; 31:618-29. [DOI: 10.1002/elps.200900507] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
De Benedetto GE, Fanigliulo M. A new CE-ESI-MS method for the detection of stable hemoglobin acetaldehyde adducts, potential biomarkers of alcohol abuse. Electrophoresis 2009; 30:1798-807. [PMID: 19441035 DOI: 10.1002/elps.200800379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new CE-ESI-MS method was developed to provide a simple way to study changes to hemoglobin (HbA) induced by acetaldehyde (Ach) in vitro. Instrumental parameters were univariately optimized in order to maximize the sensitivity of the CE-ESI-MS method. The electrophoretic separations were carried out in poly-E323-coated capillaries using 60 mM formic acid raised to pH 3.0 with ammonia and containing 5% 2-propanol while the sheath liquid, 2-propanol/water (30:70) with 0.1% formic acid, was delivered at 1.0 microL/min through a coaxial sheath flow electrospray interface. The HbA was incubated with Ach for intervals up to 24 h at concentration varying in the window 0.2-20 mM. Four stable Ach-hemoglobin adducts in the hemoglobin tryptic digest were observed at the submillimolar Ach concentration and characterized by MS/MS experiments: although the alpha and beta N-amino terminal modifications were expected, the two internal ones arising, respectively, from the condensation of Ach molecules on the histidine residue in position 4 in alpha4 (i.e. the fourth peptide after tryptic digestion of alpha chain starting from amino terminal) and on the asparagine residue in position 2 in beta3, were identified for the first time. During the in vitro experiments higher concentrations of Ach were also used; however, it was not possible to identify any other stable modification of hemoglobin. Interestingly, those stable modifications are the only ones in vivo identified in the hemoglobin of moderate alcohol drinkers.
Collapse
Affiliation(s)
- Giuseppe E De Benedetto
- Laboratorio di Analisi Chimiche per l'Ambiente e i Beni Culturali, Dipartimento dei Beni delle Arti e della Storia, Università del Salento, Lecce, Italy.
| | | |
Collapse
|
29
|
Huhn C, Ramautar R, Wuhrer M, Somsen GW. Relevance and use of capillary coatings in capillary electrophoresis–mass spectrometry. Anal Bioanal Chem 2009; 396:297-314. [DOI: 10.1007/s00216-009-3193-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
|
30
|
Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. MASS SPECTROMETRY REVIEWS 2009; 28:703-24. [PMID: 18973238 PMCID: PMC2720435 DOI: 10.1002/mas.20205] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteome analysis has emerged as a powerful technology to decipher biological processes. One of the main goals is to discover biomarkers for diseases from tissues and body fluids. However, the complexity and wide dynamic range of protein expression present an enormous challenge to separation technologies and mass spectrometry (MS). In this review, we examine the limitations of proteomics, and aim towards the definition of the current key prerequisites. We focus on capillary electrophoresis coupled to mass spectrometry (CE-MS), because this technique continues to show great promise. We discuss CE-MS from an application point of view, and evaluate its merits and vices for biomarker discovery and clinical applications. Finally, we present several examples on the use of CE-MS to determine urinary biomarkers and implications for disease diagnosis, prognosis, and therapy evaluation.
Collapse
Affiliation(s)
- Harald Mischak
- Mosaiques Diagnostics & Therapeutics, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Ahmed FE. The role of capillary electrophoresis–mass spectrometry to proteome analysis and biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1963-81. [DOI: 10.1016/j.jchromb.2009.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 04/24/2009] [Accepted: 05/10/2009] [Indexed: 01/25/2023]
|
32
|
Sebastiano R, Mendieta ME, Contiello N, Citterio A, Righetti PG. An N-methylpolyvinylpyridinium cationic polymer for capillary coating in electrophoresis of proteins and peptides. Electrophoresis 2009; 30:2313-20. [DOI: 10.1002/elps.200800672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Lu M, Zhang L, Lu Q, Chi Y, Chen G. Rapid analysis of peptides and amino acids by CE-ESI-MS using chemically modified fused-silica capillaries. Electrophoresis 2009; 30:2273-9. [DOI: 10.1002/elps.200800683] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Haselberg R, de Jong GJ, Somsen GW. Capillary electrophoresis of intact basic proteins using noncovalently triple-layer coated capillaries. J Sep Sci 2009; 32:2408-15. [DOI: 10.1002/jssc.200900164] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Stutz H. Protein attachment onto silica surfaces - a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 2009; 30:2032-61. [DOI: 10.1002/elps.200900015] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Zuberovic A, Wetterhall M, Hanrieder J, Bergquist J. CE MALDI-TOF/TOF MS for multiplexed quantification of proteins in human ventricular cerebrospinal fluid. Electrophoresis 2009; 30:1836-43. [DOI: 10.1002/elps.200800714] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Elhamili A, Wetterhall M, Puerta A, Westerlund D, Bergquist J. The effect of sample salt additives on capillary electrophoresis analysis of intact proteins using surface modified capillaries. J Chromatogr A 2009; 1216:3613-20. [DOI: 10.1016/j.chroma.2008.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/09/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
38
|
Abstract
Complex biological samples hold significant information on the health status and on development of disease. Approximately 35,000 human genes give rise to more than 1,000,000 functional entities at the protein level. Thus, the proteome provides a much richer source of information than the genome for describing the state of health or disease of humans. The composition body fluids comprise a rich source of information on changes of protein and peptide expression. Here we describe the application of capillary electrophoresis (CE) coupled online to an electrospray-ionization time-of-flight mass spectrometer (ESI-TOF-MS) to analyze human urine for the identification of biomarkers specific for complications after allogeneic hematopoietic stem cell transplantation (HSCT). Sequencing of native proteins/peptides is necessary for the identification of possible new therapeutic targets.
Collapse
|
39
|
Pantůčková P, Gebauer P, Boček P, Křivánková L. Electrolyte systems for on-line CE-MS: Detection requirements and separation possibilities. Electrophoresis 2009; 30:203-14. [DOI: 10.1002/elps.200800262] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Danger G, Pascal R, Cottet H. Non-uniform surface charge distributions in CE: Theoretical and experimental approach based on Taylor dispersion. Electrophoresis 2008; 29:4226-37. [DOI: 10.1002/elps.200800128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Matysik FM, Neusüss C, Pelzing M. Fast capillary electrophoresis coupled with time-of-flight mass spectrometry under separation conditions of high electrical field strengths. Analyst 2008; 133:1764-6. [PMID: 19082081 DOI: 10.1039/b806349d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental approach is presented that enables very fast capillary electrophoretic separations in conjunction with time-of-flight mass spectrometry. Field strengths exceeding 1 kV cm(-1) have been applied for separations of model analytes resulting in migration times on the timescale of seconds.
Collapse
|
42
|
Mellors JS, Gorbounov V, Ramsey RS, Ramsey JM. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal Chem 2008; 80:6881-7. [PMID: 18698800 PMCID: PMC3125599 DOI: 10.1021/ac800428w] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A microfabricated device has been developed in which electrospray ionization is performed directly from the corner of a rectangular glass microchip. The device allows highly efficient electrokinetically driven separations to be coupled directly to a mass spectrometer (MS) without the use of external pressure sources or the insertion of capillary spray tips. An electrokinetic-based hydraulic pump is integrated on the chip that directs eluting materials to the monolithically integrated spray tip. A positively charged surface coating, PolyE-323, is used to prevent surface interactions with peptides and proteins and to reverse the electroosmotic flow in the separation channel. The device has been used to perform microchip CE-MS analysis of peptides and proteins with efficiencies over 200,000 theoretical plates (1,000,000 plates/m). The sensitivity and stability of the microfabricated ESI source were found to be comparable to that of commercial pulled fused-silica capillary nanospray sources.
Collapse
Affiliation(s)
- J. S. Mellors
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapman Hall, Room 251, Chapel Hill, North Carolina 27599-3216
| | - V. Gorbounov
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapman Hall, Room 251, Chapel Hill, North Carolina 27599-3216
| | - R. S. Ramsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapman Hall, Room 251, Chapel Hill, North Carolina 27599-3216
| | - J. M. Ramsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapman Hall, Room 251, Chapel Hill, North Carolina 27599-3216
| |
Collapse
|
43
|
Metzger J, Schanstra JP, Mischak H. Capillary electrophoresis–mass spectrometry in urinary proteome analysis: current applications and future developments. Anal Bioanal Chem 2008; 393:1431-42. [DOI: 10.1007/s00216-008-2309-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/11/2008] [Accepted: 07/18/2008] [Indexed: 11/30/2022]
|
44
|
Herrero M, Ibañez E, Cifuentes A. Capillary electrophoresis-electrospray-mass spectrometry in peptide analysis and peptidomics. Electrophoresis 2008; 29:2148-60. [DOI: 10.1002/elps.200700404] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Elhamili A, Wetterhall M, Arvidsson B, Sebastiano R, Righetti PG, Bergquist J. Rapid capillary electrophoresis time-of-flight mass spectrometry separations of peptides and proteins using a monoquaternarized piperazine compound (M7C4I) for capillary coatings. Electrophoresis 2008; 29:1619-25. [DOI: 10.1002/elps.200700737] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Schiffer E, Mischak H, Vanholder RC. Biomarkers for Renal Disease and Uremic Toxins. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Lucy CA, MacDonald AM, Gulcev MD. Non-covalent capillary coatings for protein separations in capillary electrophoresis. J Chromatogr A 2008; 1184:81-105. [DOI: 10.1016/j.chroma.2007.10.114] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/25/2007] [Accepted: 10/31/2007] [Indexed: 11/27/2022]
|
48
|
|
49
|
Zuberovic A, Hanrieder J, Hellman U, Bergquist J, Wetterhall M. Proteome profiling of human cerebrospinal fluid: exploring the potential of capillary electrophoresis with surface modified capillaries for analysis of complex biological samples. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2008; 14:249-260. [PMID: 18756023 DOI: 10.1255/ejms.929] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A bottom-up proteomic approach, based on capillary electrophoresis (CE) in combination with matrix- assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-ToF/ToF MS), was used to analyze immunoaffinity depleted human cerebrospinal fluid (CSF) and compare it with a non-depleted sample. After enzymatic digestion and desalting, the tryptic peptides were separated by CE using PolyE-323 modified capillaries and fractionated off-line onto MALDI target plates for further analysis by MALDI-MS and MS/MS. The protein profile of the depleted sample was compared with non depleted CSF. Overall, 85 proteins were identified with 95% significance in both samples. The significance scores for proposed biomarkers, such as amyloid-like protein 1 precursor, could be increased up to 12 times after the depletion. Other proteins, often suggested to be related to neurodegenerative diseases, like amyloid beta A4 protein precursor, superoxide dismutase and apolipoprotein E precursor could only be found in the depleted CSF samples. The effect of a derivatization of tryptic peptides with 2- methoxy-4,5-dihydro-1H-imidazole reagent for protein identification with MS was also employed to increase the number of identified proteins and the sequence coverages. The results presented in this study illustrate the benefit of combining a sample pre-fractionation step and a label's ability to enhance the ionization efficiency with the potential of CE using PolyE-323 modified capillaries in the analysis of complex samples. The straight-forward approach that provides speed and simplicity resulting in high-resolution separations and low sample consumption represents an easily applicable separation technique that can serve as a complement to other currently existing analytical approaches needed in modern proteomic analysis of clinically relevant samples.
Collapse
Affiliation(s)
- Aida Zuberovic
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, PO Box 599, SE-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Ullsten S, Zuberovic A, Bergquist J. Adsorbed cationic polymer coatings for enhanced capillary electrophoresis/mass spectrometry of proteins. Methods Mol Biol 2008; 384:631-646. [PMID: 18392587 DOI: 10.1007/978-1-59745-376-9_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The combination of capillary electrophoresis (CE) with mass spectrometry (MS) constitutes a powerful microanalytical system for the analysis of biological samples. The anionic and hydrophobic surface of the fused-silica capillary is, however, known to cause severe analyte-wall interactions in protein analysis. In order to control surface properties and eliminate protein adsorption, a capillary coating can be applied. A fast and simple strategy is to coat the anionic capillary with a cationic polymer via multisite electrostatic interaction. This generates a stable deactivation layer, without the need for addition of coating agent to the background electrolyte solution. This chapter reviews the present knowledge of capillary coatings and especially cationic polymers in CE-MS, and describes the synthesis of a cationic polymer, PolyE-323, for deactivation of fused-silica capillaries. The capillary coating procedure is a simple three-step rinsing protocol comprising deprotonation of surface silanol groups using a base, adsorption of polymer, and a final rinse to remove excess polymer not adsorbed to the surface. As a result of the simplicity of the coating procedure, highly reproducible coatings can be prepared with little or no expert skills. Some practical aspects on using cationic-coated capillaries in CE-MS protein analysis are also discussed.
Collapse
Affiliation(s)
- Sara Ullsten
- Department of Analytical Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|