1
|
Lozano-Casabianca GA, Arango-Varela SS, Maldonado-Celis ME. Induction of Apoptosis and Decrease of Autophagy in Colon Cancer Cells by an Extract of Lyophilized Mango Pulp. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4165. [PMID: 36901174 PMCID: PMC10002435 DOI: 10.3390/ijerph20054165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have indicated that mango fruit has a chemopreventive capacity against colorectal cancer cells. The objective of this research was to evaluate the effect of an aqueous extract of lyophilized mango pulp (LMPE) on colon adenocarcinoma cells (SW480) and their metastatic derivatives (SW620) death and cellular invasion. DNA fragmentation was assessed by TUNEL assay; autophagy and expression of DR4 and Bcl-2 by flow cytometry; the expression of 35 apoptosis-related proteins and of matrix metalloproteinases 7 and 9 by immunodetection; and the invasive capacity of the cells by Boyden chamber. The results showed that LMPE at 30 mg/mL and 48 h of exposure results in DNA fragmentation and apoptosis in SW480 (p < 0.001) and SW620 (p < 0.01) cells. Additionally, LMPE decreased autophagy in the SW480 and SW620 cell lines (p < 0.001), which could sensitize them to the DNA damage generated by LMPE. The LMPE did not modulate the expression of matrix metalloproteinases 7 and 9, nor did it affect cellular invasion processes in the SW480 and SW620 cell lines. In conclusion, LMPE induces apoptosis and decreases autophagy in SW480 and SW620 cells.
Collapse
Affiliation(s)
| | - Sandra Sulay Arango-Varela
- Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano (ITM), Institución Universitaria, Medellín 050034, Colombia
| | | |
Collapse
|
2
|
Lozano-Casabianca GA, Arango-Varela SS, Aguillón-Osma J, Llano-Ramírez MA, Maldonado-Celis ME. Inhibition of Cell Proliferation and Induction of Cell Cycle Arrest in Colon Cancer Cells by Lyophilized Mango ( Mangifera indica L.) Pulp Extract. Prev Nutr Food Sci 2022; 27:436-447. [PMID: 36721744 PMCID: PMC9843718 DOI: 10.3746/pnf.2022.27.4.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/03/2023] Open
Abstract
The present study evaluated the antiproliferative capacity and possible cell death mechanisms of lyophilized mango pulp extract (LMPE), applied to human colon cancer cells (SW480) and their metastasis-derived counterparts (SW620). The total phenolic content of LMPE was estimated by the Folin-Ciocalteu method. Three assays were employed to determine its antioxidant capacity: ferric-reducing antioxidant power, oxygen radical absorbance capacity, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the antiproliferative activity of LMPE was assessed by sulforhodamine B, clonogenic, and Ki-67 assays. Flow cytometry was employed to examine the cell cycle, production of intracellular reactive oxygen species (ROS), cell-surface phosphatidylserine, and change in mitochondrial membrane potential. LMPE exhibited a high level of total phenolic content and antioxidant activity. The mean maximal inhibitory concentration values of LMPE at 48 h of exposure were 43 and 29 mg/mL for SW480 and SW620, respectively. In the SW480 and SW620 cell lines, LMPE at 50 mg/mL and 48 h of exposure induced an increase in intracellular ROS, cell cycle arrest in the G2/M phase, and probably, apoptotic processes without mitochondrial depolarization. LMPE had an antiproliferative capacity against the human colorectal cancer cell lines SW480 and SW620. These results highlight the chemopreventive potential of LMPE in colorectal cancer treatments.
Collapse
Affiliation(s)
- Gustavo Argenor Lozano-Casabianca
- School of Nutrition and Dietetics, University of Antioquia, Medellín 050010, Colombia,
Correspondence to Gustavo Argenor Lozano-Casabianca, E-mail:
| | - Sandra Sulay Arango-Varela
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano (ITM)-Institución Universitaria, Medellín 050034, Colombia
| | - Johanny Aguillón-Osma
- Faculty of Science of Education, The University of Quindío, Armenia 630004, Colombia
| | - María Alejandra Llano-Ramírez
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano (ITM)-Institución Universitaria, Medellín 050034, Colombia
| | | |
Collapse
|
3
|
Chen YC, Yang Y, Zhang C, Chen HY, Chen F, Wang KJ. A Novel Antimicrobial Peptide Sparamosin 26-54 From the Mud Crab Scylla paramamosain Showing Potent Antifungal Activity Against Cryptococcus neoformans. Front Microbiol 2021; 12:746006. [PMID: 34690992 PMCID: PMC8531530 DOI: 10.3389/fmicb.2021.746006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Due to the increasing prevalence of drug-resistant fungi and the limitations of current treatment strategies to fungal infections, exploration and development of new antifungal drugs or substituents are necessary. In the study, a novel antimicrobial peptide, named Sparamosin, was identified in the mud crab Scylla paramamosain, which contains a signal peptide of 22 amino acids and a mature peptide of 54 amino acids. The antimicrobial activity of its synthetic mature peptide and two truncated peptides (Sparamosin1-25 and Sparamosin26-54) were determined. The results showed that Sparamosin26-54 had the strongest activity against a variety of Gram-negative bacteria, Gram-positive bacteria and fungi, in particular had rapid fungicidal kinetics (killed 99% Cryptococcus neoformans within 10 min) and had potent anti-biofilm activity against C. neoformans, but had no cytotoxic effect on mammalian cells. The RNA-seq results showed that after Sparamosin26-54 treatment, the expression of genes involved in cell wall component biosynthesis, cell wall integrity signaling pathway, anti-oxidative stress, apoptosis and DNA repair were significantly up-regulated, indicating that Sparamosin26-54 might disrupt the cell wall of C. neoformans, causing oxidative stress, DNA damage and cell apoptosis. The underlying mechanism was further confirmed. Sparamosin26-54 could bind to several phospholipids in the cell membrane and effectively killed C. neoformans through disrupting the integrity of the cell wall and cell membrane observed by electron microscope and staining assay. In addition, it was found that the accumulation of reactive oxygen species (ROS) increased, the mitochondrial membrane potential (MMP) was disrupted, and DNA fragmentation was induced after Sparamosin26-54 treatment, which are all hallmarks of apoptosis. Taken together, Sparamosin26-54 has a good application prospect as an effective antimicrobial agent, especially for C. neoformans infections.
Collapse
Affiliation(s)
- Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chang Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Arango-Varela SS, Luzardo-Ocampo I, Reyes-Dieck C, Yahia EM, Maldonado-Celis ME. Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. J Food Biochem 2021; 45:e13760. [PMID: 33974285 DOI: 10.1111/jfbc.13760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Andean Berry (Vaccinium meridionale Sw.) is a South American fruit rich in phytochemicals with promising anti-cancer properties as co-adjuvants to nonsteroidal anti-inflammatory drugs such as Aspirin. This study aimed to evaluate the antiproliferative potential of Andean Berry Juice (ABJ) in combination with Aspirin in human SW480 colon adenocarcinoma cells. ABJ primarily contained 3,4-dihydroxybenzoic and chlorogenic acids. The combined treatment of ABJ (IC50 : 30.0 ± 0.11%) and Aspirin (IC50 : 20.0 ± 0.57) exhibited a higher (p < .01) antiproliferative effect than each counterpart. Moreover the same mixture displayed a lower reduced glutathione/oxidized glutathione ratio (GSH/GSSG) than the untreated cells. ABJ-Aspirin combination induced late apoptosis stage without stimulating mitochondrial depolarization and prompted phosphatidylserine relocalization. These results emphasize the antiproliferative potential of bioactive compounds from ABJ and Aspirin combinations. PRACTICAL APPLICATIONS: Natural products such as Andean Berry (V. meridionale Sw.) juice (ABJ) contains antioxidant polyphenols that could reduce the need to use non-steroidal anti-inflammatory drugs, currently employed in cancer treatment, to prevent its side effects. The high abundance of polyphenols from this underutilized berry could stimulate the standardization of its production and industrial exploitation to be transformed into suitable food products delivering natural bioactive compounds with potential anti-cancer effects in vitro.
Collapse
Affiliation(s)
- Sandra S Arango-Varela
- Biomedical Research and Innovation Group (GI2B), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico.,Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Queretaro, Mexico
| | - Camilo Reyes-Dieck
- Escuela de Nutrición y Dietética, Universidad de Antiquia, Medellín, Colombia
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
| | | |
Collapse
|
5
|
Olivares-Rubio HF, Salazar-Coria L, Romero-López JP, Domínguez-López ML, García-Latorre EA, Vega-López A. Fatty acid metabolism and brain mitochondrial performance of juvenile Nile tilapia (Oreochromis niloticus) exposed to the water-accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110624. [PMID: 32302862 DOI: 10.1016/j.ecoenv.2020.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/18/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Crude oil and its derivatives are still the primary source of energy for humankind. However, during its transportation and treatment, spills of this resource can occur in aquatic environments. Nile tilapia is one of the most globally widespread fish species. This species is even found in brackish water due to its tolerance to salinity and pollution. In this study, the performance of brain cells (mitochondrial membrane potential [ΔΨm], calcium [Ca2+] and O2 and H2O2 levels) exposed to crude oil was assessed. In addition, fatty acid metabolism (cholesterol concentration and fatty acid synthase [FAS], acyl CoA-oxidase [AOX] and catalase [CAT] activities) in the brain, heart, liver and intestine of Nile tilapia exposed to the water-accommodated fraction (WAF) of 0.01, 0.1 or 1 g/L Maya crude oil (MCO) for 96 h were evaluated. After exposure, in brain cells, there were only increases in ROS and slight reductions in ΔΨm. Exposure to WAF of MCO induced and increased the levels of cholesterol and altered FAS and AOX activities in all examined tissues. The brain is the most susceptible organ to alterations in the activity of fatty acid metabolic enzymes and cholesterol levels relative to the heart, liver and intestine. The correlation between inhibition of the activity of CAT and AOX suggests a possible reduction in the proliferation and size of peroxisomes. Most biomarkers were significantly altered in the brains of Nile tilapia exposed to the WAF containing 1 g/L MCO in comparison to the control.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico; Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, Mexico
| | - Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico; Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano Del Petróleo, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, CP 07730, Ciudad de México, Mexico
| | - J Pablo Romero-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - María Lilia Domínguez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - Ethel A García-Latorre
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico.
| |
Collapse
|
6
|
Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol 2017; 12:340-349. [PMID: 28288414 PMCID: PMC5350572 DOI: 10.1016/j.redox.2017.03.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/16/2023] Open
Abstract
Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.
Collapse
Affiliation(s)
- Kishor Pant
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Ajay K Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Rakibul Islam
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India.
| |
Collapse
|
7
|
Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2016; 109:841-54. [PMID: 27016252 DOI: 10.1007/s10482-016-0684-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites.
Collapse
|
8
|
Ha YR, Hwang BG, Hong Y, Yang HW, Lee SJ. Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:421-30. [PMID: 26323840 PMCID: PMC4566515 DOI: 10.3347/kjp.2015.53.4.421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 07/05/2015] [Indexed: 11/23/2022]
Abstract
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.
Collapse
Affiliation(s)
- Young Ran Ha
- Division of Integrative Bioscience and Bioengineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Bae-Geun Hwang
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yeonchul Hong
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Hye-Won Yang
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
9
|
Lampl T, Crum JA, Davis TA, Milligan C, Del Gaizo Moore V. Isolation and functional analysis of mitochondria from cultured cells and mouse tissue. J Vis Exp 2015:52076. [PMID: 25866954 PMCID: PMC4401366 DOI: 10.3791/52076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparison between two or more distinct groups, such as healthy vs. disease, is necessary to determine cellular status. Mitochondria are at the nexus of cell heath due to their role in both cell metabolism and energy production as well as control of apoptosis. Therefore, direct evaluation of isolated mitochondria and mitochondrial perturbation offers the ability to determine if organelle-specific (dys)function is occurring. The methods described in this protocol include isolation of intact, functional mitochondria from HEK cultured cells and mouse liver and spinal cord, but can be easily adapted for use with other cultured cells or animal tissues. Mitochondrial function assessed by TMRE and the use of common mitochondrial uncouplers and inhibitors in conjunction with a fluorescent plate reader allow this protocol not only to be versatile and accessible to most research laboratories, but also offers high throughput.
Collapse
Affiliation(s)
| | - Jo A Crum
- Chemistry Department, Elon University
| | | | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine; Neuroscience Graduate Program, Wake Forest School of Medicine; ALS Center Translational Science Unit, Wake Forest School of Medicine
| | | |
Collapse
|
10
|
The role of anti-apoptotic protein kinase Cα in response to hypericin photodynamic therapy in U-87 MG cells. Photodiagnosis Photodyn Ther 2014; 11:213-26. [DOI: 10.1016/j.pdpdt.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/06/2023]
|
11
|
An Q, Fillmore HL, Vouri M, Pilkington GJ. Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neuro Oncol 2013; 16:265-73. [PMID: 24335698 DOI: 10.1093/neuonc/not202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The current method for cell line authentication is genotyping based on short tandem repeat (STR)-PCR involving coamplification of a panel of STR loci by multiplex PCR and downstream fragment length analysis (FLA), usually performed by capillary electrophoresis. FLA by capillary electrophoresis is time-consuming and can be expensive, as the facilities are generally not accessible for many research laboratories. METHODS In the present study, a microfluidic electrophoresis system, the Agilent 2100 Bioanalyzer, was used to analyze the STR-PCR fragments from 10 human genomic loci of a number of human cell lines, including 6 gliomas, 1 astrocyte, 1 primary lung cancer, 1 lung brain metastatic cancer, and 1 rhabdomyosarcoma; and this was compared with the standard method, that is, capillary electrophoresis, using the Applied Biosystems 3130xl Genetic Analyzer. RESULTS The microfluidic electrophoresis method produced highly reproducible results with good sensitivity in sizing of multiple PCR fragments, and each cell line demonstrated a unique DNA profile. Furthermore, DNA fingerprinting of samples from 5 different passage numbers of the same cell line showed excellent reproducibility when FLA was performed with the Bioanalyzer, indicating that no cross-contamination had occurred during the culture period. CONCLUSION This novel application provides a straightforward and cost-effective alternative to STR-based cell line authentication. In addition, this application would be of great value for cell bank repositories to maintain and distribute precious cell lines.
Collapse
Affiliation(s)
- Qian An
- Corresponding Author: Dr. Qian An, MD, PhD, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | | | | | | |
Collapse
|
12
|
Ho SY, Wu WJ, Chiu HW, Chen YA, Ho YS, Guo HR, Wang YJ. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways. Chem Biol Interact 2011; 193:162-71. [PMID: 21741957 DOI: 10.1016/j.cbi.2011.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 12/21/2022]
Abstract
The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.
Collapse
|
13
|
Malyukin YV, Kavok NS, Borovoi IA, Stepanenko AM, Malyukina MY, Petrukhin PA. A study of the effect of adrenaline on the transmembrane potential of the plasma membrane of hepatocytes from rats of different age using fluorescent probes. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s000635091103016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Procházková J, Kubala L, Kotasová H, Gudernová I, Šrámková Z, Pekarová M, Sarkadi B, Pacherník J. ABC transporters affect the detection of intracellular oxidants by fluorescent probes. Free Radic Res 2011; 45:779-87. [PMID: 21568630 DOI: 10.3109/10715762.2011.579120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intracellular production of reactive oxygen species (ROS) plays an important role in the control of cell physiology. For the assessment of intracellular ROS production, a plethora of fluorescent probes is commonly used. Interestingly, chemical structures of these probes imply they could be substrates of plasma membrane efflux pumps, called ABC transporters. This study tested whether the determination of intracellular ROS production and mitochondrial membrane potential by selected fluorescent probes is modulated by the expression and activity of ABC transporters. The sub-clones of the HL-60 cell line over-expressing MDR1, MRP1 and BCRP transporters were employed. ROS production measured by luminol- and L-012-enhaced chemiluminescence and cytochrome c reduction assay showed similar levels of ROS production in all the employed cell lines. It was proved that dihydrorhodamine 123, dihexiloxocarbocyanine iodide, hydroethidine, tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide and tetramethylrhodamine ethyl ester perchlorate are substrates for MDR1; dichlorodihydrofluoresceine, hydroethidine and tetramethylrhodamine ethyl ester perchlorate are substrates for MRP1; dichlorodihydrofluoresceine, dihydrorhodamine 123, hydroethidine and tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide are substrates for BCRP. Thus, the determination of intracellular ROS and mitochondrial potential by the selected probes is significantly altered by ABC transporter activities. The activity of these transporters must be considered when employing fluorescent probes for the assessment of ROS production or mitochondrial membrane potential.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu X, Arriaga EA. Chemical cytometry quantitates superoxide levels in the mitochondrial matrix of single myoblasts. Anal Chem 2010; 82:6745-50. [PMID: 20704362 DOI: 10.1021/ac101509d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triphenylphosphonium hydroethidine (TPP-HE) is a membrane-permeable probe that reacts with superoxide and forms hydroxytriphenylphosphonium ethidium (OH-TPP-E(+)), a fluorescent product that has been previously used in qualitative measurements of superoxide production. In order to develop quantitative methods to measure superoxide, it is necessary to take into consideration the principles that drive TPP-HE accumulation into various subcellular compartments. In the mitochondria matrix, TPP-HE accumulation depends on the mitochondrial membrane potential, which varies from cell to cell. Here we address this issue by including rhodamine 123 (R123) as an internal mitochondrial membrane potential calibrant in chemical cytometry experiments. After loading with TPP-HE and R123, a single cell is lysed within a separation capillary and its contents are separated and detected by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection (MEKC-LIF). Using theoretical arguments, we show that the ratio [OH-TPP-E(+)]/[R123] is adequate to obtain a relative quantitation of mitochondrial matrix superoxide levels for each analyzed cell. We applied this method to single skeletal muscle myoblasts and determined that the steady state superoxide levels in the mitochondrial matrix is approximately (0.29 +/- 0.10) x 10(-12) M. The development of this quantitative method is a critical step toward establishing the importance of reactive oxygen species in biological systems, including those relevant to aging and disease.
Collapse
|
16
|
Xu X, Arriaga EA. Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine. Free Radic Biol Med 2009; 46:905-13. [PMID: 19168125 PMCID: PMC2656425 DOI: 10.1016/j.freeradbiomed.2008.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 11/25/2008] [Accepted: 12/19/2008] [Indexed: 02/07/2023]
Abstract
Superoxide is released asymmetrically to both sides of the mitochondrial inner membrane. Because this membrane is impermeable to superoxide, two separate pools are formed at either side of the membrane, each with its own characteristics and potential biological effects. Here, we report an attomole-sensitive fast capillary electrophoretic method that can analyze superoxide in a single pool, either the matrix pool or that outside the mitochondria. The method uses triphenylphosphonium hydroethidine, which reacts with the superoxide in both pools. Centrifugation is used to separate the mitochondria (i.e., matrix contents) from the supernatant (i.e., products released outside the mitochondria). Each fraction is then analyzed by capillary electrophoresis with laser-induced fluorescence detection that separates and detects hydroxytriphenylphosphonium ethidium (OH-TPP-E+), the fluorescent superoxide-specific product. The separation takes <3 min and the detection level is down to 3 amol OH-TPP-E+. The method has proved to be effective at detecting superoxide release qualitatively in the mitochondria of 143B cells, mouse liver, and rat skeletal muscle, in both the presence and the absence of inhibitors. In addition, this study confirmed that complex I releases superoxide only toward the matrix, whereas complex III releases superoxide toward both sides of the mitochondrial inner membrane. Furthermore, treatment with menadione induces superoxide release toward both sides of the mitochondrial inner membrane.
Collapse
Affiliation(s)
| | - Edgar A. Arriaga
- Corresponding author: Edgar A. Arriaga, Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, Tel: 612-624-8024; Fax: 612-626-7541; E-Mail:
| |
Collapse
|
17
|
Whiting CE, Dua RA, Duffy CF, Arriaga EA. Determining under- and oversampling of individual particle distributions in microfluidic electrophoresis with orthogonal laser-induced fluorescence detection. Electrophoresis 2008; 29:1431-40. [PMID: 18386300 DOI: 10.1002/elps.200700470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This report investigates the effects of sample size on the separation and analysis of individual biological particles using microfluidic devices equipped with an orthogonal LIF detector. A detection limit of 17 +/- 1 molecules of fluorophore is obtained using this orthogonal LIF detector under a constant flow of fluorescein, which is a significant improvement over epifluorescence, the most common LIF detection scheme used with microfluidic devices. Mitochondria from rat liver tissue and cultured 143B osteosarcoma cells are used as model biological particles. Quantile-quantile (q-q) plots were used to investigate changes in the distributions. When the number of detected mitochondrial events became too large (>72 for rat liver and >98 for 143B mitochondria), oversampling occurs. Statistical overlap theory is used to suggest that the cause of oversampling is that separation power of the microfluidic device presented is not enough to adequately separate large numbers of individual mitochondrial events. Fortunately, q-q plots make it possible to identify and exclude these distributions from data analysis. Additionally, when the number of detected events became too small (<55 for rat liver and <81 for 143B mitochondria) there were not enough events to obtain a statistically relevant mobility distribution, but these distributions can be combined to obtain a statistically relevant electrophoretic mobility distribution.
Collapse
|
18
|
Abstract
A goal of modern biology is to understand the molecular mechanisms underlying cellular function. The ability to manipulate and analyze single cells is crucial for this task. The advent of microengineering is providing biologists with unprecedented opportunities for cell handling and investigation on a cell-by-cell basis. For this reason, lab-on-a-chip (LOC) technologies are emerging as the next revolution in tools for biological discovery. In the current discussion, we seek to summarize the state of the art for conventional technologies in use by biologists for the analysis of single, mammalian cells, and then compare LOC devices engineered for these same single-cell studies. While a review of the technical progress is included, a major goal is to present the view point of the practicing biologist and the advances that might increase adoption by these individuals. The LOC field is expanding rapidly, and we have focused on areas of broad interest to the biology community where the technology is sufficiently far advanced to contemplate near-term application in biological experimentation. Focus areas to be covered include flow cytometry, electrophoretic analysis of cell contents, fluorescent-indicator-based analyses, cells as small volume reactors, control of the cellular microenvironment, and single-cell PCR.
Collapse
Affiliation(s)
- Christopher E Sims
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | |
Collapse
|