1
|
Celá A, Glatz Z. Homocyclic
o
‐dicarboxaldehydes: Derivatization reagents for sensitive analysis of amino acids and related compounds by capillary and microchip electrophoresis. Electrophoresis 2020; 41:1851-1869. [DOI: 10.1002/elps.202000041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Andrea Celá
- Department of Biochemistry, Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
2
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
3
|
Chen X, Hong F, Zhang W, Wu D, Li T, Hu F, Gan N, Lin J, Wang Q. Microchip electrophoresis based multiplexed assay for silver and mercury ions simultaneous detection in complex samples using a stirring bar modified with encoded hairpin probes for specific extraction. J Chromatogr A 2019; 1589:173-181. [PMID: 30635170 DOI: 10.1016/j.chroma.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023]
Abstract
It is crucially important to rapidly, simultaneously, and sensitively determine trace amounts of heavy metal ions in complex samples. Herein, a stirring bar modified with two kinds of encoded hairpin DNA probes (H0 and H0') was used in a multiplexed strategy allowing for specific extraction of Hg2+ and Ag+ coupled to microchip electrophoresis (MCE) separation and LED induced fluorescence (LIF) detection. The extraction step utilizes stir bars, which are functionalized with designed hairpin DNA probes (H0 with TT and H0' with CC mismatches in stems). This allows the specific capture of Hg2+ and Ag+ through CAg+C and THg2+T interactions. These complexes are then enzymatically degraded by the action of exonuclease III (Exo III). The ions released during this enzymatic reaction can initiate a new cycle of interactions with hairpin structures and enzymatic reactions and so on. This cyclic step is specific to the presence of Hg2+ and Ag+ and represents the first round of amplification of the presence of the selected ions. The resulting single strand DNAs on the stirring bars after enzymatic degradation were used in the second step as primers to trigger the catalytic hairpin assembly (CHA) in the presence of a couple of hairpin structures in solution. Such a reaction allows producing duplexes that can be monitored by MCE-LIF. The fluorescence intensity of CHA products (IP) increased and that of hairpin DNAs (IR) decreased with the increase of target concentrations. The signal ratios (IP/IR and IP'/IR') consisted of targets. The assay was employed for Hg2+ and Ag+ detection in several mediums including water, milk, and fish samples with complex matrices. The results showed that the assay could avoid matrix interference to increase the sensitivity. Therefore, the multiplexed assay was ideal to simultaneously and quickly detect metal ions in complex samples.
Collapse
Affiliation(s)
- Xixue Chen
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Feng Hong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Weilin Zhang
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Dazhen Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Tianhua Li
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo, 31521, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China.
| | - Jianyuan Lin
- Zhejiang Wanli University, Ningbo, 315100, China.
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
5
|
Li X, Zhao S, Hu H, Liu YM. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis. J Chromatogr A 2016; 1451:156-163. [PMID: 27207575 DOI: 10.1016/j.chroma.2016.05.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
Abstract
Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217, United States
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 51004, China
| | - Hankun Hu
- Wuhan University Zhongnan Hospital, Wuhan 430071, China; Wuhan Yaogu Bio-tech, Wuhan 430075, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217, United States; Wuhan Yaogu Bio-tech, Wuhan 430075, China.
| |
Collapse
|
6
|
El-Said WA, Choi JW. In-situ detection of neurotransmitter release from PC12 cells using Surface Enhanced Raman Spectroscopy. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0092-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Deng B, Tian Y, Yu X, Song J, Guo F, Xiao Y, Zhang Z. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip. Anal Chim Acta 2014; 820:104-11. [DOI: 10.1016/j.aca.2014.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 01/06/2023]
|
8
|
Hu H, Li Z, Zhang X, Xu C, Guo Y. Rapid determination of catecholamines in urine samples by nonaqueous microchip electrophoresis with LIF detection. J Sep Sci 2013; 36:3419-25. [PMID: 24038935 DOI: 10.1002/jssc.201300342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 08/03/2013] [Indexed: 11/06/2022]
Abstract
A method was developed for the rapid separation of catecholamines by nonaqueous microchip electrophoresis (NAMCE) with LIF detection, A homemade pump-free negative pressure sampling device was used for rapid bias-free sampling in NAMCE, the injection time was 0.5 s and the electrophoresis separation conditions were optimized. Under the optimized conditions, the samples were separated completely in <1 min. The average migration times of the epinephrine (E), dopamine (DA), and norepinephrine (NE) were 34.26, 43.81, and 50.07 s, with an RSD of 1.05, 1.26, and 0.89% (n = 7), respectively. The linearity of the method ranged from 0.0125 to 2.0 mg/L for E and 0.025~4.0 mg/L for DA and NE, with correlation coefficients ranging between 0.9978 and 0.9986. The detection limits of E, DA, and NE were 2.5, 5.0, and 5.0 μg/L, respectively. The recoveries of E, DA, and NE in spiked urine samples were between 86 and 103%, with RSDs of 4.5~6.8% (n = 5). The proposed NAMCE with LIF detection combined with a pump-free negative pressure sampling device is a simple, inexpensive, energy efficient, miniaturized system that can be successfully applied for the determination of catecholamines in urine samples.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, China
| | | | | | | | | |
Collapse
|
9
|
Liu X, Yu Y, Gu H, Zhou T, Wang L, Mei B, Shi G. Simultaneous determination of monoamines in rat brain with Pt/MWCNTs@Pdop hybrid nanocomposite using capillary electrophoresis- amperometric detection. Electrophoresis 2013; 34:935-43. [DOI: 10.1002/elps.201200071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoqian Liu
- Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process; East China Normal University; Shanghai; P. R. China
| | - Yanyan Yu
- Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process; East China Normal University; Shanghai; P. R. China
| | - Hui Gu
- Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process; East China Normal University; Shanghai; P. R. China
| | - Tianshu Zhou
- Department of Environmental Science; East China Normal University; Shanghai; P. R. China
| | - Lili Wang
- Shanghai Key Laboratory of Brain Functional Genomics; East China Normal University; Shanghai; P. R. China
| | - Bing Mei
- Shanghai Key Laboratory of Brain Functional Genomics; East China Normal University; Shanghai; P. R. China
| | - Guoyue Shi
- Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process; East China Normal University; Shanghai; P. R. China
| |
Collapse
|
10
|
Xu C, Cai L. Analysis of intracellular reducing levels in human hepatocytes on three-dimensional focusing microchip. LUMINESCENCE 2013; 29:36-41. [PMID: 23297173 DOI: 10.1002/bio.2472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/22/2012] [Accepted: 11/22/2012] [Indexed: 11/05/2022]
Abstract
A novel three-dimensional hydrodynamic focusing microfluidic device integrated with high-throughput cell sampling and detection of intracellular contents is presented. It has a pivotal role in maintaining the reducing environment in cells. Intracellular reducing species such as vitamin C and glutathione in normal and tumor cells were labeled by a newly synthesized 2,2,6,6-tetramethyl-piperidine-1-oxyl-based fluorescent probe. Hepatocytes are adherent cells, which are prone to attaching to the channel surface. To avoid the attachment of cells on the channel surface, a single channel microchip with three sheath-flow channels located on both sides of and below the sampling channel was developed. Hydrostatic pressure generated by emptying the sample waste reservoir was used as driving force of fluid on the microchip. Owing to the difference between the liquid levels of the reservoirs, the labeled cells were three-dimensional hydrodynamically focused and transported from the sample reservoir to the sample waste reservoir. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip without any external pressure pump, which drives three sheath-flow streams to constrain a sample flow stream into a narrow stream to avoid blockage of the sampling channel by adhered cells. The intracellular reducing levels of HepG2 cells and L02 cells were detected by home-built laser-induced fluorescence detector. The analysis throughput achieved in this microfluidic system was about 59-68 cells/min.
Collapse
Affiliation(s)
- Chunxiu Xu
- Department of Chemistry, Hanshan Normal University, 521041, Chaozhou, People's Republic of China
| | | |
Collapse
|
11
|
Tao Y, Lin Y, Ren J, Qu X. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens Bioelectron 2012. [PMID: 23202328 DOI: 10.1016/j.bios.2012.10.014] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An easy prepared fluorometric and colorimetric dual channel probe is developed for dopamine (DA) detection with high sensitivity and selectivity by use of BSA-stabilized Au nanoclusters (BSA-AuNCs). The BSA-AuNCs exhibit strong fluorescence emission, while upon addition of DA, the AuNCs show a dramatic decrease of the fluorescence intensity as a result of the photo-induced electron transfer process from the electrostatically attached DA to the BSA-AuNCs. The detection limit of DA can be as low as 10 nM. In addition, the assay for DA can also be easy to implement for visual detection due to the observed inhibition of the peroxidase-like activity of AuNCs in the presence of DA, with a detection limit of 10 nM. Both fluorometric and colorimetric methods exhibit excellent selectivity toward DA over interfering substances. Furthermore, we demonstrate the application of the present approach in hydrochloride injection sample, human serum sample and PC12 cells, which suggests its great potential for diagnostic purposes.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Science, Changchun, Jilin 130022, China
| | | | | | | |
Collapse
|
12
|
Zhang N, Guo XF, Wang H, Zhang HS. Determination of amino acids and catecholamines derivatized with 3-(4-chlorobenzoyl)-2-quinolinecarboxaldehyde in PC12 and HEK293 cells by capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 2011; 401:297-304. [DOI: 10.1007/s00216-011-5056-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/29/2022]
|
13
|
Abstract
The intracellular levels and spatial localizations of metabolites and peptides reflect the state of a cell and its relationship to its surrounding environment. Moreover, the amounts and dynamics of metabolites and peptides are indicative of normal or pathological cellular conditions. Here we highlight established and evolving strategies for characterizing the metabolome and peptidome of single cells. Focused studies of the chemical composition of individual cells and functionally defined groups of cells promise to provide a greater understanding of cell fate, function and homeostatic balance. Single-cell bioanalytical microanalysis has also become increasingly valuable for examining cellular heterogeneity, particularly in the fields of neuroscience, stem cell biology and developmental biology.
Collapse
Affiliation(s)
- Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign
| | - Peter Nemes
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
14
|
Xu CX, Yin XF. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing. J Chromatogr A 2011; 1218:726-32. [DOI: 10.1016/j.chroma.2010.11.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
15
|
Xu C, Wang M, Yin X. Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells. Analyst 2011; 136:3877-83. [DOI: 10.1039/c1an15019g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Jang K, Xu Y, Tanaka Y, Sato K, Mawatari K, Konno T, Ishihara K, Kitamori T. Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system. BIOMICROFLUIDICS 2010; 4:32208. [PMID: 21045929 PMCID: PMC2967240 DOI: 10.1063/1.3494287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 09/08/2010] [Indexed: 05/15/2023]
Abstract
Recently, interest in single cell analysis has increased because of its potential for improving our understanding of cellular processes. Single cell operation and attachment is indispensable to realize this task. In this paper, we employed a simple and direct method for single-cell attachment and culture in a closed microchannel. The microchannel surface was modified by applying a nonbiofouling polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, and a nitrobenzyl photocleavable linker. Using ultraviolet (UV) light irradiation, the MPC polymer was selectively removed by a photochemical reaction that adjusted the cell adherence inside the microchannel. To obtain the desired single endothelial cell patterning in the microchannel, cell-adhesive regions were controlled by use of round photomasks with diameters of 10, 20, 30, or 50 μm. Single-cell adherence patterns were formed after 12 h of incubation, only when 20 and 30 μm photomasks were used, and the proportions of adherent and nonadherent cells among the entire UV-illuminated areas were 21.3%±0.3% and 7.9%±0.3%, respectively. The frequency of single-cell adherence in the case of the 20 μm photomask was 2.7 times greater than that in the case of the 30 μm photomask. We found that the 20 μm photomask was optimal for the formation of single-cell adherence patterns in the microchannel. This technique can be a powerful tool for analyzing environmental factors like cell-surface and cell-extracellular matrix contact.
Collapse
|
17
|
Ye F, Huang Y, Xu Q, Shi M, Zhao S. Quantification of taurine and amino acids in mice single fibrosarcoma cell by microchip electrophoresis coupled with chemiluminescence detection. Electrophoresis 2010; 31:1630-6. [DOI: 10.1002/elps.200900665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Zhao S, Huang Y, Shi M, Liu R, Liu YM. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 2010; 82:2036-41. [PMID: 20121202 PMCID: PMC2830326 DOI: 10.1021/ac9027643] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were approximately 10(-9) M for biogenic amines including dopamine and epinephrine and approximately 10(-8) M for biogenic thiols (e.g., glutathione and acetylcysteine), organic acids (i.e., ascorbic acid and uric acid), estrogens, and native amino acids. These were 10-1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser-induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids, including Lys, Ser, Ala, Glu, Trp, etc., were detected. The contents ranged from 3 to 31 amol/cell. The assay proved to be simple, quick, reproducible, and very sensitive.
Collapse
Affiliation(s)
- Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, China
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Poinsot VÃ, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by CE. Electrophoresis 2010; 31:105-21. [DOI: 10.1002/elps.200900399] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Zhang N, Zhang HS, Wang H. Separation of free amino acids and catecholamines in human plasma and rabbit vitreous samples using a new fluorogenic reagent 3-(4-bromobenzoyl)-2-quinolinecarboxaldehyde with CE-LIF detection. Electrophoresis 2009; 30:2258-65. [DOI: 10.1002/elps.200800667] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Yin X, Zhu L, Wang M. Intracellular Labeling Methods for Chip-Based Capillary Electrophoresis. J LIQ CHROMATOGR R T 2008. [DOI: 10.1080/10826070802128698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xuefeng Yin
- a Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University , Hangzhou, P. R. China
| | - Lanlan Zhu
- a Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University , Hangzhou, P. R. China
| | - Min Wang
- a Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University , Hangzhou, P. R. China
| |
Collapse
|
23
|
Huang WH, Ai F, Wang ZL, Cheng JK. Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:104-22. [DOI: 10.1016/j.jchromb.2008.01.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
24
|
Borland LM, Kottegoda S, Phillips KS, Allbritton NL. Chemical analysis of single cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:191-227. [PMID: 20636079 DOI: 10.1146/annurev.anchem.1.031207.113100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.
Collapse
Affiliation(s)
- Laura M Borland
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|