1
|
Liu Y, Li Y, Qian M, Wu Y, Li M, Zhang C, Qi H. Iridium(III) solvent complex-based electrogenerated chemiluminescence method for the detection of 3-methylhistidine in urine. Anal Bioanal Chem 2024; 416:4705-4715. [PMID: 38937290 DOI: 10.1007/s00216-024-05402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
3-Methylhistidine (3-MeHis) is increasingly used as an indicator of muscle protein breakdown. The development of a sensitive, simple, and non-invasive method for 3-MeHis assay is important in clinical practice. Herein, a sensitive, simple, and non-invasive electrogenerated chemiluminescence (ECL) method was proposed for the quantitation of 3-MeHis in urine by using an iridium(III) solvent complex ([Ir(dfppy)2(DMSO)Cl], dfppy = 2-(2,4-difluorophenyl)pyridine, Ir-DMSO) as a signal reagent. The photoluminescence (PL) and ECL responses of Ir-DMSO to 3-MeHis were studied. The ECL intensity of Ir-DMSO was enhanced in the presence of 3-MeHis because of the coordination recognition between Ir-DMSO and the imidazole group of 3-MeHis. Based on the enhancement of ECL intensity, 3-MeHis can be sensitively detected in the range of 5 to 25 μM. The detection limit was 0.4 μM. This is the first report of an ECL method for the quantitation of 3-MeHis. Further, to investigate the feasibility of the Ir-DMSO-based ECL method in practical applications, the developed ECL method was applied for 3-MeHis assay in urine samples of 28 healthy volunteers and 2 patients. The urine samples from patients hospitalized with obesity and kidney disease and healthy individuals were distinguished by the ECL responses of Ir-DMSO. The proposed ECL method based on the coordination recognition between iridium(III) solvent complex and the imidazole group of 3-MeHis allows inexpensive, fast, non-invasive, and sensitive detection of 3-MeHis in urine, which is promising for assessing large volumes of patients for routine analysis in clinical practices.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yue Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yang Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
2
|
Pukleš I, Páger C, Sakač N, Matasović B, Kovač-Andrić E, Šarkanj B, Samardžić M, Budetić M, Molnárová K, Marković D, Vesinger A, Jozanović M. A new green approach to L-histidine and β-alanine analysis in dietary supplements using rapid and simple contactless conductivity detection integrated with high-resolution glass-microchip electrophoresis. Anal Bioanal Chem 2024; 416:3605-3617. [PMID: 38713223 DOI: 10.1007/s00216-024-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
The analysis of dietary supplements is far less regulated than pharmaceuticals, leading to potential quality issues. Considering their positive effect, many athletes consume supplements containing L-histidine and β-alanine. A new microfluidic method for the determination of L-histidine and β-alanine in dietary supplement formulations has been developed. For the first time, capacitively coupled contactless conductivity detection was employed for the microchip electrophoresis of amino acids in real samples. A linear relationship between detector response and concentration was observed in the range of 10-100 µmol L-1 for L-histidine (R2 = 0.9968) and β-alanine (R2 = 0.9954), while achieved limits of detection (3 × S/N ratio) were 4.2 µmol L-1 and 5.2 µmol L-1, respectively. The accuracy of the method was confirmed using recovery experiments as well as CE-UV-VIS and HPLC-UV-VIS techniques. The developed method allows unambiguous identification of amino acids in native form without chemical derivatization and with the possibility of simultaneous analysis of amino acids with metal cations.
Collapse
Affiliation(s)
- Iva Pukleš
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, Pécs, 7624, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja, Pécs, 7624, Hungary
| | - Csilla Páger
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova 7, HR-42000, Varaždin, Croatia
| | - Brunislav Matasović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Elvira Kovač-Andrić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Bojan Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000, Koprivnica, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Ana Vesinger
- Pirelli Deutschland GmbH, Höchster Straße 48-60, 64747, Breuberg, Germany
| | - Marija Jozanović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8, HR-31000, Osijek, Croatia.
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, Pécs, 7624, Hungary.
| |
Collapse
|
3
|
Elbashir AA, Osman A, Elawad M, Ziyada AK, Aboul-Enein HY. Application of capillary electrophoresis with capacitively contactless conductivity detection for biomedical analysis. Electrophoresis 2024; 45:400-410. [PMID: 38100198 DOI: 10.1002/elps.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 03/20/2024]
Abstract
The coupling of capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4 D) has become convenient analytical method for determination of small molecules that do not possess chromogenic or fluorogenic group. The implementations of CE with C4 D in the determination of inorganic and organic ions and amino acids in biomedical field are demonstrated. Attention on background electrolyte composition, sample treatment procedures, and the utilize of multi-detection systems are described. A number of tables summarizing highly developed CE-C4 D methods and the figures of merit attained are involved. Lastly, concluding remarks and perspectives are argued.
Collapse
Affiliation(s)
- Abdalla A Elbashir
- Department, of Chemistry, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abdelbagi Osman
- Department of Chemical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mohammed Elawad
- Department of Chemistry, Faculty of Science, Omdurman Islamic University, Omdurman, Sudan
| | - Abobakr K Ziyada
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Division of Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Cost-Effective Simultaneous Determination of τ- and π-Methylhistidine in Dairy Bovine Plasma from Large Cohort Studies Using Hydrophilic Interaction Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The isomeric metabolites τ- and π-methylhistidine (formerly referred to as 3- and 1-methylhistidine) are known biomarkers for muscle protein breakdown and meat protein intake, frequently used in studies involving humans and animals. In the present study, we report the development and validation of a simple HILIC-MS/MS method for individual determination of τ-MH and π-MH in a large cohort of blood plasma samples from dairy cows. Their separate determination was achieved mainly through a mass spectrometry fragment ion study, which revealed that the two isomers exhibited distinct mass spectrometric behaviors at different collision energies. Chromatographic conditions were optimised to achieve better separation, minimizing inter-channel interference to less than 1% in both directions. A simple and effective sample clean-up method facilitated low laboratory manual workload. The analytical method was validated for the determination of τ-MH and π-MH in bovine plasma within a concentration range of 80 to 1600 μg/L and provided good linearity (>0.99 for both curves) and precision (<10%). Overall, the developed method enabled the determination of the two isomers in an efficient and economic-friendly manner suitable for large cohort bovine studies (involving hundreds to thousands of samples) mainly to provide data for statistical use.
Collapse
|
5
|
Tůma P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review. Anal Chim Acta 2022; 1225:340161. [DOI: 10.1016/j.aca.2022.340161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
|
6
|
Twenty years of amino acid determination using capillary electrophoresis: A review. Anal Chim Acta 2021; 1174:338233. [DOI: 10.1016/j.aca.2021.338233] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
|
7
|
Tůma P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection - Theory, instrumentation and applications. Talanta 2020; 224:121922. [PMID: 33379123 DOI: 10.1016/j.talanta.2020.121922] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
This review article summarises aspects of the determination of amino acids using capillary and chip electrophoresis in combination with contactless conductivity detection from their historical beginnings to the present time. Discussion is included of the theory of conductivity detection in electromigration techniques, the design of contactless conductivity cells for detection in capillaries and on microchips, including the use of computer programs for simulation of the conductivity response and the process of the electrophoretic separation of amino acids. Emphasis is placed on optimisation of the background electrolyte composition, chiral separation, multidimensional separation, stacking techniques and the use of multidetection systems. There is also a description of clinical applications, the determination of amino acids in foodstuffs, waters, soils and composts with emphasis on modern techniques of sample treatment, such as microdialysis, liquid membrane extraction and many other techniques.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
8
|
Noblitt SD, Henry CS. Calibration-free quantitation in microchip zone electrophoresis with conductivity detection. Electrophoresis 2015; 36:1927-34. [PMID: 26040588 DOI: 10.1002/elps.201500098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 11/07/2022]
Abstract
The relationship between electrophoretic mobility and molar conductivity has previously led to speculation on achieving quantitation in zone electrophoresis without calibration curves when using conductivity detection. However, little work in this area has been pursued, possibly because of the breakdown of simple sensitivity-mobility relationships when working with partially protonated species. This topic is revisited with the aid of electrophoretic simulation software that produces facile predictions of analyte sensitivity relative to an internal standard. Calibration curve slopes for over 50 analyte/internal standard/BGE combinations were measured with both unbiased and electrokinetically biased injections using microchip electrophoresis with conductivity detection. The results were compared to theoretical expectations as computed with PeakMaster software. Good agreement was observed, with some systems being predicted with quantitative accuracy while others showed significant deviations. Some mechanisms that can lead to deviations from theory are demonstrated, but the causes for some discrepancies are still not understood. Overall, this work exhibits another useful application for simulation software, particularly for disposable devices where device-specific calibration curves cannot be collected. It also serves as quantitative validation for some outputs of PeakMaster simulation software.
Collapse
Affiliation(s)
- Scott D Noblitt
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
Makrlíková A, Opekar F, Tůma P. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection. Electrophoresis 2015; 36:1962-8. [DOI: 10.1002/elps.201400613] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Anna Makrlíková
- Department of Analytical Chemistry; Faculty of Science, Charles University in Prague; Prague Czech Republic
| | - František Opekar
- Department of Analytical Chemistry; Faculty of Science, Charles University in Prague; Prague Czech Republic
| | - Petr Tůma
- Institute of Biochemistry Cell and Molecular Biology; Third Faculty of Medicine, Charles University in Prague; Prague Czech Republic
| |
Collapse
|
10
|
Lima RS, Piazzetta MHO, Gobbi AL, Segato TP, Cabral MF, Machado SAS, Carrilho E. Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis. Chem Commun (Camb) 2013; 49:11382-4. [DOI: 10.1039/c3cc45797d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lima RS, Segato TP, Gobbi AL, Coltro WKT, Carrilho E. Doping of a dielectric layer as a new alternative for increasing sensitivity of the contactless conductivity detection in microchips. LAB ON A CHIP 2011; 11:4148-4151. [PMID: 22045405 DOI: 10.1039/c1lc20757a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This communication describes a new procedure to increase the sensitivity of C(4)D in PDMS/glass microchips. The method consists in doping the insulating layer (PDMS) over the electrodes with nanoparticles of TiO(2), increasing thus its dielectric constant. The experimental protocol is simple, inexpensive, and fast.
Collapse
Affiliation(s)
- Renato Sousa Lima
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | | |
Collapse
|
12
|
Viglio S, Fumagalli M, Ferrari F, Bardoni A, Salvini R, Giuliano S, Iadarola P. Recent novel MEKC applications to analyze free amino acids in different biomatrices: 2009-2010. Electrophoresis 2011; 33:36-47. [DOI: 10.1002/elps.201100336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 11/07/2022]
|
13
|
Pormsila W, Morand R, Krähenbühl S, Hauser PC. Quantification of plasma lactate concentrations using capillary electrophoresis with contactless conductivity detection. Electrophoresis 2011; 32:884-9. [DOI: 10.1002/elps.201000420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 11/11/2022]
|
14
|
Kubáň P, Hauser PC. Capacitively coupled contactless conductivity detection for microseparation techniques - recent developments. Electrophoresis 2010; 32:30-42. [DOI: 10.1002/elps.201000354] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
|
15
|
Zinellu A, Sotgia S, Pisanu E, Scanu B, Sanna M, Deiana L, Carru C. Quantification of histidine, 1-methylhistidine and 3-methylhistidine in plasma and urine by capillary electrophoresis UV-detection. J Sep Sci 2010; 33:3781-5. [DOI: 10.1002/jssc.201000392] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 11/09/2022]
|
16
|
Elbashir AA, Aboul-Enein HY. Applications of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) in pharmaceutical and biological analysis. Biomed Chromatogr 2010; 24:1038-44. [DOI: 10.1002/bmc.1417] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Microwave-accelerated derivatization for capillary electrophoresis with laser-induced fluorescence detection: A case study for determination of histidine, 1- and 3-methylhistidine in human urine. Talanta 2010; 82:72-7. [DOI: 10.1016/j.talanta.2010.03.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/25/2010] [Accepted: 03/27/2010] [Indexed: 11/19/2022]
|
18
|
Viglio S, Fumagalli M, Ferrari F, Iadarola P. MEKC: A powerful tool for the determination of amino acids in a variety of biomatrices. Electrophoresis 2010; 31:93-104. [DOI: 10.1002/elps.200900366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Johns C, Breadmore MC, Macka M, Ryvolová M, Haddad PR. Recent significant developments in detection and method development for the determination of inorganic ions by CE. Electrophoresis 2009; 30 Suppl 1:S53-67. [DOI: 10.1002/elps.200900103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Johns KF, Breadmore MC, Bruno R, Haddad PR. Evaluation of Peakmaster for computer-aided multivariate optimisation of a CE separation of 17 antipsychotic drugs using minimal experimental data. Electrophoresis 2009; 30:839-47. [DOI: 10.1002/elps.200800532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Fu LM, Hong TF, Wen CY, Tsai CH, Lin CH. Electrokinetic instability effects in microchannels with and without nanofilm coatings. Electrophoresis 2009; 29:4871-9. [PMID: 19130549 DOI: 10.1002/elps.200800455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This paper presents a parametric experimental investigation into the electrokinetic instability (EKI) phenomenon within three different types of microfluidic device, namely T-type, cross-shaped, and cross-form with an expansion configuration. The critical electric field strength at which the EKI phenomenon is induced is examined as a function of the conductivity ratio, the microchannel width, the expansion ratio, and the surface treatment of the microchannel walls. It is found that the critical electric field strength associated with the onset of EKI is strongly dependent on the conductivity ratio of the two samples within the microfluidic device and reduces as the channel width increases. The surfaces of the microchannel walls are coated with hydrophilic or hydrophobic organic-based spin-on-glass (SOG) nanofilms for glass-based microchips. The experimental results indicate that no significant difference exists in the critical electric field strengths in the hydrophilic or hydrophobic SOG-coated microchannels, respectively. However, for a given conductivity ratio and microchannel width, the critical strength of the electric field is slightly lower in the SOG-coated microchannels than in the non-coated channels. In general, the results presented in this study demonstrate the potential for designing and controlling on-chip assays requiring the manipulation of samples with high conductivity gradients, and provide a useful general reference for avoiding EKI effects in capillary electrophoresis analysis applications.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Ferrari F, Fumagalli M, Viglio S, Aquilani R, Pasini E, Iadarola P. A rapid MEKC method for the simultaneous determination of creatinine, 1- and 3-methylhistidine in human urine. Electrophoresis 2009; 30:654-6. [DOI: 10.1002/elps.200800565] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Wellner EF, Kalish H. A chip-based immunoaffinity capillary electrophoresis assay for assessing hormones in human biological fluids. Electrophoresis 2008; 29:3477-83. [PMID: 18651671 DOI: 10.1002/elps.200700785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A chip-based capillary electrophoresis system has been designed for assessing the concentrations of four hormones in whole human blood, saliva, and urine. The desired analytes were isolated by immunoextraction using a panel of four analyte-specific antibodies immobilized onto a glass fiber insert within the injection port of the chip. Following extraction, the captured analytes were labeled prior to electro-elution into the chip separation channel, where they were resolved into four individual peaks in circa 2 min. Quantification of each peak was achieved by on-line LIF detection and integration of the area under each peak. Comparison to commercial high-sensitivity immunoassays demonstrated that the chip-based assay provided fast, accurate, and precise measurements for the analytes under investigation. As the availability of commercially available antibodies rapidly expands, the application of this system will greatly increase. Chip-based CE separations of multiple analytes from a single sample also provide a significant advantage in the analysis of small samples.
Collapse
Affiliation(s)
- Edward F Wellner
- Nanoscale Immunodiagnostics, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering/NIH, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Li OL, Tong YL, Chen ZG, Liu C, Zhao S, Mo JY. A Glass/PDMS Hybrid Microfluidic Chip Embedded with Integrated Electrodes for Contactless Conductivity Detection. Chromatographia 2008. [DOI: 10.1365/s10337-008-0808-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Liu C, Mo YY, Chen ZG, Li X, Li OL, Zhou X. Dual fluorescence/contactless conductivity detection for microfluidic chip. Anal Chim Acta 2008; 621:171-7. [DOI: 10.1016/j.aca.2008.05.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
|
26
|
Gillespie E, Connolly D, Macka M, Hauser P, Paull B. Development of a contactless conductivity detector cell for 1.6 mm O.D. (1/16th inch) HPLC tubing and micro-bore columns with on-column detection. Analyst 2008; 133:1104-10. [DOI: 10.1039/b803038c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|