1
|
Wang Z, Zhang X. Single Cell Proteomics for Molecular Targets in Lung Cancer: High-Dimensional Data Acquisition and Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:73-87. [PMID: 29943297 DOI: 10.1007/978-981-13-0502-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the proteomic and genomic era, lung cancer researchers are increasingly under challenge with traditional protein analyzing tools. High output, multiplexed analytical procedures are in demand for disclosing the post-translational modification, molecular interactions and signaling pathways of proteins precisely, specifically, dynamically and systematically, as well as for identifying novel proteins and their functions. This could be better realized by single-cell proteomic methods than conventional proteomic methods. Using single-cell proteomic tools including flow cytometry, mass cytometry, microfluidics and chip technologies, chemical cytometry, single-cell western blotting, the quantity and functions of proteins are analyzed simultaneously. Aside from deciphering disease mechanisms, single-cell proteomic techniques facilitate the identification and screening of biomarkers, molecular targets and promising compounds as well. This review summarized single-cell proteomic tools and their use in lung cancer.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China. .,Biomedical Research Center, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Gavasso S, Gullaksen SE, Skavland J, Gjertsen BT. Single-cell proteomics: potential implications for cancer diagnostics. Expert Rev Mol Diagn 2016; 16:579-89. [DOI: 10.1586/14737159.2016.1156531] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sonia Gavasso
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Jørn Skavland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn T. Gjertsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Translational Hemato-Oncology Group, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Kazemzadeh A, Ganesan P, Ibrahim F, He S, Madou MJ. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study. PLoS One 2013; 8:e73002. [PMID: 24069169 PMCID: PMC3772009 DOI: 10.1371/journal.pone.0073002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.
Collapse
Affiliation(s)
- Amin Kazemzadeh
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Medical Informatics & Biological Micro-electro-mechanical Systems (MIMEMS) Specialized Laboratory, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Poo Ganesan
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Medical Informatics & Biological Micro-electro-mechanical Systems (MIMEMS) Specialized Laboratory, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Fatimah Ibrahim
- Medical Informatics & Biological Micro-electro-mechanical Systems (MIMEMS) Specialized Laboratory, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Shuisheng He
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Marc J. Madou
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California, United States of America
- Ulsan National Institute of Science and Technology (UNIST), World Class University (WCU), Ulsan, South Korea
| |
Collapse
|
4
|
Sarvi F, Yue Z, Hourigan K, Thompson MC, Chan PPY. Surface-functionalization of PDMS for potential micro-bioreactor and embryonic stem cell culture applications. J Mater Chem B 2013; 1:987-996. [DOI: 10.1039/c2tb00019a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
5
|
Shinohara H, Kitagawa F, Mizuno J, Shoji S, Ohara O, Takahashi Y, Nakahara A, Otsuka K. XPS and NEXAFS studies of VUV/O3-treated aromatic polyurea and its application to microchip electrophoresis. IET Nanobiotechnol 2011; 5:136-42. [DOI: 10.1049/iet-nbt.2011.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Affiliation(s)
- Yuqing Lin
- Department of Chemistry, University of Gothenburg, S-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|
7
|
Ryan D, Ren K, Wu H. Single-cell assays. BIOMICROFLUIDICS 2011; 5:21501. [PMID: 21559238 PMCID: PMC3089644 DOI: 10.1063/1.3574448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
This review presents an overview of literature that describes the applications of microfluidics to assay individual cells. We quantify the content of an individual mammalian cell, so that we can understand what criteria a single-cell assay must satisfy to be successful. We put in context the justification for single-cell assays and identify the characteristics that are relevant to single-cell assays. We review the literature from the past 24 months that describe the methods that use microfabrication-conventional or otherwise-and microfluidics in particular to study individual cells, and we present our views on how an increasing emphasis on three-dimensional cell culture and the demonstration of the first chemically defined cell might impact single-cell assays.
Collapse
Affiliation(s)
- Declan Ryan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
8
|
Ziółkowska K, Kwapiszewski R, Brzózka Z. Microfluidic devices as tools for mimicking the in vivo environment. NEW J CHEM 2011. [DOI: 10.1039/c0nj00709a] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Church C, Zhu J, Huang G, Tzeng TR, Xuan X. Integrated electrical concentration and lysis of cells in a microfluidic chip. BIOMICROFLUIDICS 2010; 4:44101. [PMID: 20981237 PMCID: PMC2962669 DOI: 10.1063/1.3496358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 09/13/2010] [Indexed: 05/06/2023]
Abstract
Lysing cells is an important step in the analysis of intracellular contents. Concentrating cells is often required in order to acquire adequate cells for lysis. This work presents an integrated concentration and lysis of mammalian cells in a constriction microchannel using dc-biased ac electric fields. By adjusting the dc component, the electrokinetic cell motion can be precisely controlled, leading to an easy switch between concentration and lysis of red blood cells in the channel constriction. These two operations are also used in conjunction to demonstrate a continuous concentration and separation of leukemia cells from red blood cells in the same microchannel. The observed cell behaviors agree reasonably with the simulation results.
Collapse
|
10
|
Affiliation(s)
- Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080;
| | - Samuel Kim
- Polymer Research Institute and National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea;
| |
Collapse
|
11
|
Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem 2010; 398:2493-504. [DOI: 10.1007/s00216-010-3850-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/09/2010] [Accepted: 05/13/2010] [Indexed: 01/09/2023]
|
12
|
Zhang C, Xing D. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chem Rev 2010; 110:4910-47. [DOI: 10.1021/cr900081z] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
13
|
|
14
|
Wen CY, Yeh CP, Tsai CH, Fu LM. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 2009; 30:4179-86. [DOI: 10.1002/elps.200900400] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Kraly JR, Holcomb RE, Guan Q, Henry CS. Review: Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 2009; 653:23-35. [PMID: 19800473 DOI: 10.1016/j.aca.2009.08.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 01/19/2023]
Abstract
Metabolomics is an emerging area of research focused on measuring small molecules in biological samples. There are a number of different types of metabolomics, ranging from global profiling of all metabolites in a single sample to measurement of a selected group of analytes. Microfluidics and related technologies have been used in this research area with good success. The aim of this review article is to summarize the use of microfluidics in metabolomics. Direct application of microfluidics to the determination of small molecules is covered first. Next, important sample preparation methods developed for microfluidics and applicable to metabolomics are covered. Finally, a summary of metabolomic work as it relates to analysis of cellular events using microfluidics is covered.
Collapse
Affiliation(s)
- James R Kraly
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, CO 80523, United States
| | | | | | | |
Collapse
|
16
|
Zhou J, Yan H, Ren K, Dai W, Wu H. Convenient Method for Modifying Poly(dimethylsiloxane) with Poly(ethylene glycol) in Microfluidics. Anal Chem 2009; 81:6627-32. [DOI: 10.1021/ac900551m] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianhua Zhou
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hui Yan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kangning Ren
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen Dai
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Fu LM, Hong TF, Wen CY, Tsai CH, Lin CH. Electrokinetic instability effects in microchannels with and without nanofilm coatings. Electrophoresis 2009; 29:4871-9. [PMID: 19130549 DOI: 10.1002/elps.200800455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This paper presents a parametric experimental investigation into the electrokinetic instability (EKI) phenomenon within three different types of microfluidic device, namely T-type, cross-shaped, and cross-form with an expansion configuration. The critical electric field strength at which the EKI phenomenon is induced is examined as a function of the conductivity ratio, the microchannel width, the expansion ratio, and the surface treatment of the microchannel walls. It is found that the critical electric field strength associated with the onset of EKI is strongly dependent on the conductivity ratio of the two samples within the microfluidic device and reduces as the channel width increases. The surfaces of the microchannel walls are coated with hydrophilic or hydrophobic organic-based spin-on-glass (SOG) nanofilms for glass-based microchips. The experimental results indicate that no significant difference exists in the critical electric field strengths in the hydrophilic or hydrophobic SOG-coated microchannels, respectively. However, for a given conductivity ratio and microchannel width, the critical strength of the electric field is slightly lower in the SOG-coated microchannels than in the non-coated channels. In general, the results presented in this study demonstrate the potential for designing and controlling on-chip assays requiring the manipulation of samples with high conductivity gradients, and provide a useful general reference for avoiding EKI effects in capillary electrophoresis analysis applications.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|