1
|
Tyrosine-O-sulfation is a widespread affinity enhancer among thrombin interactors. Biochem Soc Trans 2022; 50:387-401. [PMID: 34994377 DOI: 10.1042/bst20210600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.
Collapse
|
2
|
Soltermann F, Struwe WB, Kukura P. Label-free methods for optical in vitro characterization of protein-protein interactions. Phys Chem Chem Phys 2021; 23:16488-16500. [PMID: 34342317 PMCID: PMC8359934 DOI: 10.1039/d1cp01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions are involved in the regulation and function of the majority of cellular processes. As a result, much effort has been aimed at the development of methodologies capable of quantifying protein-protein interactions, with label-free methods being of particular interest due to the associated simplified workflows and minimisation of label-induced perturbations. Here, we review recent advances in optical technologies providing label-free in vitro measurements of affinities and kinetics. We provide an overview and comparison of existing techniques and their principles, discussing advantages, limitations, and recent applications.
Collapse
Affiliation(s)
- Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Weston B. Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| |
Collapse
|
3
|
Wang CC, Chen BH, Lu LY, Hung KS, Yang YS. Preparation of Tyrosylprotein Sulfotransferases for In Vitro One-Pot Enzymatic Synthesis of Sulfated Proteins/Peptides. ACS OMEGA 2018; 3:11633-11642. [PMID: 30320268 PMCID: PMC6173500 DOI: 10.1021/acsomega.7b01533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Protein tyrosine sulfation (PTS), catalyzed by membrane-anchored tyrosylprotein sulfotransferase (TPST), is one of the most common post-translational modifications of secretory and transmembrane proteins. PTS, a key modulator of extracellular protein-protein interactions, accounts for various important biological activities, namely, virus entry, inflammation, coagulation, and sterility. The preparation and characterization of TPST is fundamental for understanding the synthesis of tyrosine-sulfated proteins and for studying PTS in biology. A sulfated protein was prepared using a TPST-coupled protein sulfation system that involves the generation of the active sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS) through either PAPS synthetase (PAPSS) or phenol sulfotransferase. The preparation of sulfated proteins was confirmed through radiometric or immunochemical assays. In this study, enzymatically active Drosophila melanogaster TPST (DmTPST) and human TPSTs (hTPST1 and hTPST2) were expressed in Escherichia coli BL21(DE3) host cells and purified to homogeneity in high yield. Our results revealed that recombinant DmTPST was particularly useful considering its catalytic efficiency and ease of preparation in large quantities. This study provides tools for high-efficiency, one-step synthesis of sulfated proteins and peptides that are useful for further deciphering the mechanisms, functions, and future applications of PTS.
Collapse
Affiliation(s)
- Chen-Chu Wang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Bo-Han Chen
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Lu-Yi Lu
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Kuo-Sheng Hung
- Department
of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, No.111, Section 3, Hsing-Long Road, Taipei 11696, Taiwan
| | - Yuh-Shyong Yang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| |
Collapse
|
4
|
Moser AC, Trenhaile S, Frankenberg K. Studies of antibody-antigen interactions by capillary electrophoresis: A review. Methods 2018; 146:66-75. [DOI: 10.1016/j.ymeth.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022] Open
|
5
|
Ouimet CM, Shao H, Rauch JN, Dawod M, Nordhues B, Dickey CA, Gestwicki JE, Kennedy RT. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis. Anal Chem 2016; 88:8272-8. [PMID: 27434096 DOI: 10.1021/acs.analchem.6b02126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.
Collapse
Affiliation(s)
- Claire M Ouimet
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States
| | - Jennifer N Rauch
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Bryce Nordhues
- Department of Molecular Medicine, University of South Florida , 4001 E. Fletcher Ave., MDC 36, Tampa, Florida 33613, United States
| | - Chad A Dickey
- Department of Molecular Medicine, University of South Florida , 4001 E. Fletcher Ave., MDC 36, Tampa, Florida 33613, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan , 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Yang YS, Wang CC, Chen BH, Hou YH, Hung KS, Mao YC. Tyrosine sulfation as a protein post-translational modification. Molecules 2015; 20:2138-64. [PMID: 25635379 PMCID: PMC6272617 DOI: 10.3390/molecules20022138] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/06/2015] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS) is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST) through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.
Collapse
Affiliation(s)
- Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Chen-Chu Wang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Bo-Han Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - You-Hua Hou
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Kuo-Sheng Hung
- Department of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, Taipei 11696, Taiwan.
| | - Yi-Chih Mao
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| |
Collapse
|
7
|
Capillary electrophoresis-based assessment of nanobody affinity and purity. Anal Chim Acta 2014; 818:1-6. [DOI: 10.1016/j.aca.2014.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
|
8
|
Geyer CR, McCafferty J, Dübel S, Bradbury ARM, Sidhu SS. Recombinant antibodies and in vitro selection technologies. Methods Mol Biol 2012; 901:11-32. [PMID: 22723092 DOI: 10.1007/978-1-61779-931-0_2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the accumulation of detailed knowledge of antibody structure and function has enabled antibody phage display to emerge as a powerful in vitro alternative to hybridoma methods for creating antibodies. Many antibodies produced using phage display technology have unique properties that are not obtainable using traditional hybridoma technologies. In phage display, selections are performed under controlled, in vitro conditions that are tailored to suit demands of the antigen and the sequence encoding the antibody is immediately available. These features obviate many of the limitations of hybridoma methodology, and because the entire process relies on scalable molecular biology techniques, phage display is also suitable for high-throughput applications. Thus, antibody phage display technology is well suited for genome-scale biotechnology and therapeutic applications. This review describes the antibody phage display technology and highlights examples of antibodies with unique properties that cannot easily be obtained by other technologies.
Collapse
|
9
|
Bradbury ARM, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 2011; 29:245-54. [PMID: 21390033 PMCID: PMC3057417 DOI: 10.1038/nbt.1791] [Citation(s) in RCA: 417] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vitro display technologies, best exemplified by phage and yeast display, were first described for the selection of antibodies some 20 years ago. Since then, many antibodies have been selected and improved upon using these methods. Although it is not widely recognized, many of the antibodies derived using in vitro display methods have properties that would be extremely difficult, if not impossible, to obtain by immunizing animals. The first antibodies derived using in vitro display methods are now in the clinic, with many more waiting in the wings. Unlike immunization, in vitro display permits the use of defined selection conditions and provides immediate availability of the sequence encoding the antibody. The amenability of in vitro display to high-throughput applications broadens the prospects for their wider use in basic and applied research.
Collapse
|
10
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
11
|
Rosendahl J, Rónai Z, Kovacs P, Teich N, Wittenburg H, Blüher M, Stumvoll M, Mössner J, Keim V, Bradbury AR, Sahin-Tóth M. Sequence analysis of the human tyrosylprotein sulfotransferase-2 gene in subjects with chronic pancreatitis. Pancreatology 2010; 10:165-72. [PMID: 20460947 PMCID: PMC2899149 DOI: 10.1159/000231979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/14/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Human trypsinogens are post-translationally sulfated on Tyr154 by the Golgi resident enzyme tyrosylprotein sulfotransferase-2 (TPST2). Tyrosine sulfation stimulates the autoactivation of human cationic trypsinogen. Because increased trypsinogen autoactivation has been implicated as a pathogenic mechanism in chronic pancreatitis, we hypothesized that genetic variants of TPST2 might alter the risk for the disease. METHODS We sequenced the 4 protein-coding exons and the adjacent intronic sequences of TPST2 in 151 subjects with chronic pancreatitis and in 169 healthy controls. The functional effect of TPST2 variants on trypsinogen sulfation was analyzed in transfected HEK 293T cells. RESULTS We detected 10 common polymorphic variants, including 6 synonymous variants and 4 intronic variants, with similar frequencies in patients and controls. None of the 8 common haplotypes reconstructed from the frequent variants showed an association with chronic pancreatitis. In addition, we identified 5 rare TPST2 variants, which included 3 synonymous alterations, the c.458G>A (p.R153H) nonsynonymous variant and the c.-9C>T variant in the 5' untranslated region. The p.R153H variant was found in a family with hereditary pancreatitis; however, it did not segregate with the disease. In functional assays, both the p.R153H and c.-9C>T TPST2 variants catalyzed trypsinogen sulfation as well as wild-type TPST2. CONCLUSION Genetic variants of human TPST2 exert no influence on the risk of chronic pancreatitis.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany,*Jonas Rosendahl, Department für Innere Medizin, Medizinische Klinik und Poliklinik II, Universitätsklinikum Leipzig, Philipp-Rosenthal-Strasse 27, DE–04103 Leipzig (Germany), Tel. +49 341 97 13223, Fax +49 341 97 12209, E-Mail
| | - Zsolt Rónai
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Mass., USA
| | - Peter Kovacs
- Interdisciplinary Center for Clinical Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Niels Teich
- Internistische Gemeinschaftspraxis für Verdauungs- und Stoffwechselerkrankungen, Leipzig, Germany
| | - Henning Wittenburg
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Joachim Mössner
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | - Volker Keim
- Department of Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | - Andrew R.M. Bradbury
- Biosciences Division, TA-43, HRL-1, MS M888, Los Alamos National Laboratory, Los Alamos, N. Mex., USA
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Mass., USA
| |
Collapse
|
12
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
13
|
Dullnig V, Weiss R, Amon S, Rizzi A, Stutz H. Confirmation of immuno-reactivity of the recombinant major birch pollen allergen Bet v 1a by affinity-CIEF. Electrophoresis 2009; 30:2337-46. [DOI: 10.1002/elps.200800749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
|
15
|
A common African polymorphism abolishes tyrosine sulfation of human anionic trypsinogen (PRSS2). Biochem J 2009; 418:155-61. [PMID: 18986305 DOI: 10.1042/bj20081848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human pancreatic trypsinogens undergo post-translational sulfation on Tyr(154), catalysed by the Golgi-resident enzyme tyrosylprotein sulfotransferase 2. Sequence alignments suggest that the sulfation of Tyr(154) is facilitated by a unique sequence context which is characteristically found in primate trypsinogens. In the search for genetic variants that might alter this sulfation motif, we identified a single nucleotide polymorphism (c.457G>C) in the PRSS2 (serine protease 2, human anionic trypsinogen) gene, which changed Asp(153) to a histidine residue (p.D153H). The p.D153H variant is common in subjects of African origin, with a minor allele frequency of 9.2%, whereas it is absent in subjects of European descent. We demonstrate that Asp(153) is the main determinant of tyrosine sulfation in anionic trypsinogen, as both the natural p.D153H variation and the p.D153N mutation result in a complete loss of trypsinogen sulfation. In contrast, mutation of Asp(156) and Glu(157) only slightly decrease tyrosine sulfation, whereas mutation of Gly(151) and Pro(155) has no effect. With respect to the biological relevance of the p.D153H variant, we found that tyrosine sulfation had no significant effect on the activation of anionic trypsinogen or the catalytic activity and inhibitor sensitivity of anionic trypsin. Taken together with previous studies, the observations of the present study suggest that the primary role of trypsinogen sulfation in humans is to stimulate autoactivation of PRSS1 (serine protease 1, human cationic trypsinogen), whereas the sulfation of anionic trypsinogen is unimportant for normal digestive physiology. As a result, the p.D153H polymorphism which eliminates this modification could become widespread in a healthy population.
Collapse
|