1
|
Di L, Cheng S, Zhu Y, Jin Y, Qi C, Zhang L, Zhang M, Wang X, Han Y, Li XL, Min JZ. Development of a diphenyl sulfide structure derivatization reagent for amino acid enantiomers analysis: Application of dynamic monitoring in human urine after drinking wine. J Chromatogr A 2023; 1688:463698. [PMID: 36528900 DOI: 10.1016/j.chroma.2022.463698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
We developed a novel chiral mass spectrometry derivatization reagent (S)-(3-(4-carboxythiazolidin-3-yl)-3-oxopropyl) diphenylsulfonium (CTOD) with a positively charged sulfur-containing structure for high-sensitivity detection of the chiral resolution of amino acid enantiomers. CTOD reacted with DL-amino acids at 60oC for 60 min to generate the corresponding diastereomers, fifteen chiral amino acid-derived products were separated. Resolution (Rs) values were of the range 1.54-4.36, except Asn 1.07, achieving good separation. A highly sensitive and selective UHPLC-MS/MS method for the simultaneous determination and chiral separation of five chiral amino acids (Pro, Ala, Glu, Asp, and Phe) based on CTOD derivatization was established and applied to the detection of chiral amino acids in different wines. The diastereomeric resolution of the five amino acids was 1.71-5.42, and an excellent linear relationship was obtained in the range of 0.25-500 pmol (R2 ≥0.9993). The detection limit was 0.05-0.25 pmol. The intra- and inter-day precisions were 0.51-5.76% and 0.78-5.18%, respectively, and the average recovery was 90.03-99.99%. In addition, the metabolic concentration of chiral amino acids was monitored after drinking red wine and white wine, and the fitting curve of metabolic concentration was drawn.
Collapse
Affiliation(s)
- Lei Di
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Yan Zhu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Lingli Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Xin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China.
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
2
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|
3
|
D-amino acids in foods. Appl Microbiol Biotechnol 2019; 104:555-574. [PMID: 31832715 DOI: 10.1007/s00253-019-10264-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
With the only exception of glycine, all amino acids exist in two specular structures which are mirror images of each other, called D-(dextro) and L-(levo) enantiomers. During evolution, L-amino acids were preferred for protein synthesis and main metabolism; however, the D-amino acids (D-AAs) acquired different and specific functions in different organisms (from playing a structural role in the peptidoglycan of the bacterial cell wall to modulating neurotransmission in mammalian brain). With the advent of sophisticated and sensitive analytical techniques, it was established during the past few decades that many foods contain considerable amounts of D-AAs: we consume more than 100 mg of D-AAs every day. D-AAs are present in a variety of foodstuffs, where they fulfill a relevant role in producing differences in taste and flavor and in their antimicrobial and antiaging properties from the corresponding L-enantiomers. In this review, we report on the derivation of D-AAs in foods, mainly originating from the starting materials, fermentation processes, racemization during food processing, or contamination. We then focus on leading-edge methods to identify and quantify D-AAs in foods. Finally, current knowledge concerning the effect of D-AAs on the nutritional state and human health is summarized, highlighting some positive and negative effects. Notwithstanding recent progress in D-AA research, the relationships between presence and nutritional value of D-AAs in foods represent a main scientific issue with interesting economic impact in the near future.
Collapse
|
4
|
Combination of an AccQ•Tag-Ultra-Performance Liquid Chromatographic Method with Tandem Mass Spectrometry for the Analysis of Amino Acids. Methods Mol Biol 2019. [PMID: 31347119 DOI: 10.1007/978-1-4939-9639-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Amino acid analysis is a powerful tool in life sciences. Current analytical methods used for the detection and quantitation of low abundance amino acids in complex samples face intrinsic challenges such as insufficient sensitivity, selectivity, and throughput. This chapter describes a protocol that makes use of AccQ•Tag chemical derivatization combined with the exceptional chromatographic resolution of ultra-performance liquid chromatography (UPLC) and the sensitivity and selectivity of tandem mass spectrometry (MS/MS). The method has been fully implemented and validated using different tandem quadrupole detectors and thoroughly tested for a variety of samples such as P. falciparum, human red blood cells, and Arabidopsis thaliana extracts. Compared to currently available methods for amino acid analysis, the AccQ•Tag UPLC-MS/MS method presented here provides enhanced sensitivity and reproducibility and offers excellent performance within a short analysis time and a broad dynamic range of analyte concentration. The focus of this chapter is the application of this improved protocol for the compositional amino acid analysis in Arabidopsis thaliana leaf extracts using the Xevo TQ for mass spectrometric detection.
Collapse
|
5
|
Rocco A, Donati E, Touloupakis E, Aturki Z. Miniaturized separation techniques as analytical methods to ensure quality and safety of dietary supplements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Pérez-Míguez R, Marina ML, Castro-Puyana M. Enantiomeric separation of non-protein amino acids by electrokinetic chromatography. J Chromatogr A 2016; 1467:409-416. [PMID: 27372417 DOI: 10.1016/j.chroma.2016.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
Abstract
New analytical methodologies enabling the enantiomeric separation of a group of non-protein amino acids of interest in the pharmaceutical and food analysis fields were developed in this work using Electrokinetic Chromatography. The use of FMOC as derivatization reagent and the subsequent separation using acidic conditions (formate buffer at pH 2.0) and anionic cyclodextrins as chiral selectors allowed the chiral separation of eight from the ten non-protein amino acids studied. Pyroglutamic acid, norvaline, norleucine, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, and selenomethionine were enantiomericaly separated using sulfated-α-CD while sulfated-γ-CD enabled the enantiomeric separation of norvaline, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, selenomethionie, citrulline, and pipecolic acid. Moreover, the potential of the developed methodologies was demonstrated in the analysis of citrulline and its enantiomeric impurity in food supplements. For that purpose, experimental and instrumental variables were optimized and the analytical characteristics of the proposed method were evaluated. LODs of 2.1×10-7 and 1.8×10-7M for d- and l-citrulline, respectively, were obtained. d-Cit was not detectable in any of the six food supplement samples analyzed showing that the effect of storage time on the racemization of citrulline was negligible.
Collapse
Affiliation(s)
- Raquel Pérez-Míguez
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Aung HP, Pyell U. In-capillary derivatization with o-phthalaldehyde in the presence of 3-mercaptopropionic acid for the simultaneous determination of monosodium glutamate, benzoic acid, and sorbic acid in food samples via capillary electrophoresis with ultraviolet detection. J Chromatogr A 2016; 1449:156-65. [DOI: 10.1016/j.chroma.2016.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
8
|
Abstract
Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).
Collapse
Affiliation(s)
- M Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, 28871, Spain
| | - María Castro-Puyana
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, 28871, Spain.
| |
Collapse
|
9
|
Capillary electrophoresis determination of non-protein amino acids as quality markers in foods. J Chromatogr A 2015; 1428:97-114. [PMID: 26233255 DOI: 10.1016/j.chroma.2015.07.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 11/21/2022]
Abstract
Non-protein amino acids mainly exist in food as products formed during food processing, as metabolic intermediates or as additives to increase nutritional and functional properties of food. This fact makes their analysis and determination an attractive field in food science since they can give interesting information on the quality and safety of foods. This article presents a comprehensive review devoted to describe the latest advances in the development of (achiral and chiral) analytical methodologies by capillary electrophoresis and microchip capillary electrophoresis for the analysis of non-protein amino acids in a variety of food samples. Most relevant information related to sample treatment, experimental separation and detection conditions, preconcentration strategies and limits of detection will be provided.
Collapse
|
10
|
Turkia H, Sirén H, Penttilä M, Pitkänen JP. Capillary electrophoresis with laser-induced fluorescence detection for studying amino acid uptake by yeast during beer fermentation. Talanta 2015; 131:366-71. [DOI: 10.1016/j.talanta.2014.07.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
|
11
|
Glatz Z. On-capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis. Electrophoresis 2014; 36:744-63. [DOI: 10.1002/elps.201400449] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Zdeněk Glatz
- Department of Biochemistry; Faculty of Science and CEITEC; Masaryk University; Brno Czech Republic
| |
Collapse
|
12
|
Guan J, Li H, Yan F, Shi S, Wang S. Optimization and validation of a novel CE method for the enantioseparation of pantoprazole and related benzimididazole using a dual chiral selector system. Electrophoresis 2014; 35:2800-6. [DOI: 10.1002/elps.201400305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Guan
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Huan Li
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Feng Yan
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Shuang Shi
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Shilin Wang
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| |
Collapse
|
13
|
Fradi I, Farcas E, Saïd AB, Yans ML, Lamalle C, Somsen GW, Prior A, de Jong GJ, Kallel M, Crommen J, Servais AC, Fillet M. In-capillary derivatization with (-)-1-(9-fluorenyl)ethyl chloroformate as chiral labeling agent for the electrophoretic separation of amino acids. J Chromatogr A 2014; 1363:338-47. [PMID: 25082527 DOI: 10.1016/j.chroma.2014.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 11/25/2022]
Abstract
An original micellar electrokinetic chromatography (MEKC) method using in-capillary derivatization with a chiral labeling reagent was developed for the separation of amino acid (AA) derivatives. The potential of (-)-1-(9-fluorenyl)-ethyl chloroformate (FLEC) as in-capillary derivatization agent is described for the first time. Several parameters for in-capillary derivatization and subsequent MEKC separation were systematically investigated using experimental designs. Firstly experimental conditions for in-capillary derivatization were optimized using face-centered central composite design (FCCD). Mixing voltage and time as well as concentration of the labeling solution were investigated. Efficient labeling was achieved by sequential injection of AAs and FLEC labeling solution followed by the application of a voltage of 0.2 kV for 570 s. The background electrolyte (BGE) composition was then optimized in order to achieve selectivity. A FCCD was performed with two factors, namely the sodium dodecyl sulfate (SDS) concentration and the percentage of propan-2-ol (IPA). The separation of 12 pairs of derivatized AA (FLEC-AA) diastereomers was achieved with resolution values comprised between 3 and 20. Furthermore, an efficient derivatization and separation of 29 FLEC-AA derivatives were achieved in a single run using a buffer made up of 40 mM sodium tetraborate, 21 mM SDS and 8.5% IPA. The method was successfully applied to the analysis of spiked artificial cerebrospinal fluid (aCSF) sample.
Collapse
Affiliation(s)
- Ines Fradi
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium; Laboratory of Chemical, Galenical and Pharmacological Drug Development, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia; Drug Control National Laboratory, Tunis, Tunisia
| | - Elena Farcas
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium
| | - Azza Ben Saïd
- Laboratory of Chemical, Galenical and Pharmacological Drug Development, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Marie-Laure Yans
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium
| | - Caroline Lamalle
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium
| | - Govert W Somsen
- Department of Chemistry and Pharmaceutical Sciences, University of Amsterdam, The Netherlands
| | - Amir Prior
- Department of Chemistry and Pharmaceutical Sciences, University of Amsterdam, The Netherlands
| | - Gerhardus J de Jong
- Department of Chemistry and Pharmaceutical Sciences, University of Amsterdam, The Netherlands
| | - Mohamed Kallel
- Laboratory of Chemical, Galenical and Pharmacological Drug Development, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium
| | - Anne-Catherine Servais
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium
| | - Marianne Fillet
- Laboratory of Analytical Pharmaceutical Chemistry, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, CHU, B36, B-4000 Liège 1, Belgium.
| |
Collapse
|
14
|
Tian M, Zhang J, Mohamed AC, Han Y, Guo L, Yang L. Efficient capillary electrophoresis separation and determination of free amino acids in beer samples. Electrophoresis 2013; 35:577-84. [DOI: 10.1002/elps.201300416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Miaomiao Tian
- Faculty of Chemistry; Northeast Normal University; Changchun Jilin P. R. China
| | - Junfu Zhang
- Department of Public Security of Jilin Province; Institute of Forensic Science; Changchun Jilin P. R. China
| | | | - Yingzi Han
- Faculty of Chemistry; Northeast Normal University; Changchun Jilin P. R. China
| | - Liping Guo
- Faculty of Chemistry; Northeast Normal University; Changchun Jilin P. R. China
| | - Li Yang
- Faculty of Chemistry; Northeast Normal University; Changchun Jilin P. R. China
| |
Collapse
|
15
|
|
16
|
Moreno-González D, Toraño JS, Gámiz-Gracia L, García-Campaña AM, de Jong GJ, Somsen GW. Micellar electrokinetic chromatography-electrospray ionization mass spectrometry employing a volatile surfactant for the analysis of amino acids in human urine. Electrophoresis 2013; 34:2615-22. [DOI: 10.1002/elps.201300247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Javier Sastre Toraño
- Department of Pharmaceutical Sciences, Utrecht University; Utrecht; The Netherlands
| | | | | | - Gerhardus J. de Jong
- Department of Pharmaceutical Sciences, Utrecht University; Utrecht; The Netherlands
| | | |
Collapse
|
17
|
Tsioupi DA, Stefan-Vanstaden RI, Kapnissi-Christodoulou CP. Chiral selectors in CE: recent developments and applications. Electrophoresis 2013; 34:178-204. [PMID: 23161372 DOI: 10.1002/elps.201200239] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023]
Abstract
This review article provides an overview of the recent advances in enantioanalysis by use of electrophoretic techniques. Due to the big number of publications in the subject mentioned above, this article is focused on chiral method developments and applications published from 2008 until 2011, and it demonstrates chiral selectors used in CE. Numerous chiral selectors have been used over the years, and these include the cyclic and the linear oligo- and polysaccharides, the branched polysaccharides, the polymeric and monomeric surfactants, the macrocyclic and other antibiotics, and the crown ethers. Different dual-selector systems are also presented in this article, and the results are compared with those obtained by use of a single chiral selector. Finally, several pharmaceutical and biomedical applications based on chiral recognition are summarized.
Collapse
|
18
|
Gomez FJV, Monasterio RP, Vargas VCS, Silva MF. Analytical characterization of wine and its precursors by capillary electrophoresis. Electrophoresis 2012; 33:2240-52. [PMID: 22887148 DOI: 10.1002/elps.201100595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented.
Collapse
Affiliation(s)
- Federico J V Gomez
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|
19
|
Park ST, Kim J, Choi K, Lee HR, Chung DS. Headspace-single drop microextraction with a commercial capillary electrophoresis instrument. Electrophoresis 2012; 33:2961-8. [DOI: 10.1002/elps.201200317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Sung Tai Park
- Department of Chemistry; Seoul National University; Seoul; Korea
| | - Jihye Kim
- Department of Chemistry; Seoul National University; Seoul; Korea
| | - Kihwan Choi
- Department of Chemistry; Seoul National University; Seoul; Korea
| | - Hye Ryeo Lee
- Department of Chemistry; Seoul National University; Seoul; Korea
| | - Doo Soo Chung
- Department of Chemistry; Seoul National University; Seoul; Korea
| |
Collapse
|
20
|
Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization. J Chromatogr A 2012; 1267:121-6. [PMID: 22727557 DOI: 10.1016/j.chroma.2012.05.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/20/2022]
Abstract
A novel dual chiral CE method was developed for the separation of l- and d-amino acids (AAs), using in-capillary derivatization with 9-fluoroenylmethyl chloroformate (FMOC). Firstly, using pre-column derivatization, the enantioseparation of FMOC-AAs was optimized according to the nature of cyclodextrins (CD). A background electrolyte (BGE) composed of 30 mM β-CD, 30 mM octakis(2,3-dihydroxy-6-O-sulfo)-γ-CD (OS-γ-CD), 40 mM tetraborate and 15% isopropanol (IPA) was selected and led to 17 baseline resolved pairs (R(s)=1.7-5.8) and two partially resolved pairs (Lys, R(s)=0.5 and Arg, R(s)=1.2). Experimental conditions for in-capillary derivatization were then optimized. Several parameters, such as mixing voltage and time, concentration of labeling solution and the length of the spacer plug were studied. The optimal conditions for in-capillary derivatization procedure were obtained using successive hydrodynamic injections (30 mbar) of AAs for 2s, borate buffer for 4s and 10mM FMOC solution for 6s, followed by a mixing at 3 kV for 72 s and wait time of 1 min. Moreover, a particular attention was paid to improve separation chemoselectivity. The effect on stereoselectivity and chemoselectivity of different factors, such as decrease of pH and tetraborate concentration and the addition of sodium dodecyl sulfate (SDS), was investigated using the in-capillary derivatization procedure. The best separation of a standard mixture of ten AA racemates was observed using a BGE containing 30 mM β-CD, 30 mM OS-γ-CD, 25 mM SDS, 40 mM sodium tetraborate and 17% IPA.
Collapse
|
21
|
Combination of an AccQ·Tag-ultra performance liquid chromatographic method with tandem mass spectrometry for the analysis of amino acids. Methods Mol Biol 2012; 828:13-28. [PMID: 22125132 DOI: 10.1007/978-1-61779-445-2_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Amino acid analysis is a powerful tool in life sciences. Current analytical methods used for the detection and quantitation of low abundance amino acids in complex samples face intrinsic challenges such as insufficient sensitivity, selectivity, and throughput. This chapter describes a protocol that makes use of AccQ∙Tag chemical derivatization combined with the exceptional chromatographic resolution of ultra performance liquid chromatography (UPLC), and the sensitivity and selectivity of tandem mass spectrometry (MS/MS). The method has been fully implemented and validated using different tandem quadrupole detectors, and thoroughly tested for a variety of samples such as Plasmodium falciparum, human red blood cells, and Arabidopsis thaliana extracts. Compared to currently available methods for amino acid analysis, the AccQ∙Tag UPLC-MS/MS method presented here provides enhanced sensitivity and reproducibility, and offers excellent performance within a short analysis time and a broad dynamic range of analyte concentration. The focus of this chapter is the application of this improved protocol for the compositional amino acid analysis in A. thaliana leaf extracts using the Xevo TQ for mass spectrometric detection.
Collapse
|
22
|
Hai X, Yang BF, Van Schepdael A. Recent developments and applications of EMMA in enzymatic and derivatization reactions. Electrophoresis 2011; 33:211-27. [DOI: 10.1002/elps.201100366] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/12/2022]
|
23
|
Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3078-95. [DOI: 10.1016/j.jchromb.2011.03.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 11/20/2022]
|
24
|
Optimization of dynamic pH junction for the sensitive determination of amino acids in urine by capillary electrophoresis. Anal Bioanal Chem 2011; 401:3275-81. [DOI: 10.1007/s00216-011-5445-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 01/11/2023]
|
25
|
Mandrioli R, Morganti E, Mercolini L, Kenndler E, Raggi MA. Fast analysis of amino acids in wine by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2011; 32:2809-15. [PMID: 21922500 DOI: 10.1002/elps.201100112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/08/2022]
Abstract
A fast analytical method has been developed for the determination of nine amino acids, together with serotonin, in wine samples of different origin and vintage. The method is based on capillary electrophoresis coupled to laser-induced fluorescence detection. Separation was obtained by using a fused-silica capillary (75 μm id, 74.0 cm total length, 60.0 cm length to detector) and a background electrolyte composed of carbonate buffer (20 mM, pH 9.2), applying a 20 kV voltage. Direct hydrodynamic injection of wine samples was made after an original microwave-assisted derivatisation step with 5-(4,6-dichlorotriazinyl)aminofluorescein. Fluorescence was induced by an Ar-Ion laser, exciting at 488 nm. Good linearity (r(2) >0.9990) was obtained for all considered analytes and sensitivity was also good, with limits of detection in the 7-50 ng/mL range. The method was successfully applied for the analysis of commercial Italian wines and thus seems to be suitable for the determination of the relevant amino acids and serotonin, providing good results in terms of accuracy and precision, together with the advantage of a very fast, microwave-assisted derivatisation procedure. Future applications of the method are planned to check for wine adulterations and commercial frauds.
Collapse
Affiliation(s)
- Roberto Mandrioli
- Pharmaco-Toxicological Analysis Laboratory, Department of Pharmaceutical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
26
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
27
|
Friedman M. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids. Chem Biodivers 2010; 7:1491-530. [DOI: 10.1002/cbdv.200900225] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Herrero M, Simó C, García-Cañas V, Fanali S, Cifuentes A. Chiral capillary electrophoresis in food analysis. Electrophoresis 2010; 31:2106-14. [DOI: 10.1002/elps.200900770] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Herrero M, García-Cañas V, Simo C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2010; 31:205-28. [PMID: 19967713 DOI: 10.1002/elps.200900365] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The use of capillary electromigration methods to analyze foods and food components is reviewed in this work. Papers that were published during the period April 2007 to March 2009 are included following the previous review by García-Cañas and Cifuentes (Electrophoresis, 2008, 29, 294-309). These works include the analysis of amino acids, biogenic amines, peptides, proteins, DNAs, carbohydrates, phenols, polyphenols, pigments, toxins, pesticides, vitamins, additives, small organic and inorganic ions and other compounds found in foods and beverages, as well as those applications of CE for monitoring food interactions and food processing. The use of microchips, CE-MS, chiral-CE as well as other foreseen trends in food analysis are also discussed including their possibilities in the very new field of Foodomics.
Collapse
Affiliation(s)
- Miguel Herrero
- Departamento de Caracterización de Alimentos, Instituto de Fermentaciones Industriales, Madrid 28006, Spain
| | | | | | | |
Collapse
|
30
|
Zhang J, Hoogmartens J, Van Schepdael A. Recent developments and applications of EMMA in enzymatic and derivatization reactions. Electrophoresis 2010; 31:65-73. [DOI: 10.1002/elps.200900373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Poinsot VÃ, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by CE. Electrophoresis 2010; 31:105-21. [DOI: 10.1002/elps.200900399] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Sánchez-Hernández L, GarcÃa-Ruiz C, Luisa Marina M, Luis Crego A. Recent approaches for enhancing sensitivity in enantioseparations by CE. Electrophoresis 2010; 31:28-43. [DOI: 10.1002/elps.200900429] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Asensio-Ramos M, Hernández-Borges J, Rocco A, Fanali S. Food analysis: A continuous challenge for miniaturized separation techniques. J Sep Sci 2009; 32:3764-800. [DOI: 10.1002/jssc.200900321] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Domínguez-Vega E, Sánchez-Hernández L, García-Ruiz C, Crego AL, Marina ML. Development of a CE-ESI-ITMS method for the enantiomeric determination of the non-protein amino acid ornithine. Electrophoresis 2009; 30:1724-33. [DOI: 10.1002/elps.200800679] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|