1
|
Chiral Pesticides with Asymmetric Sulfur: Extraction, Separation, and Determination in Different Environmental Matrices. SEPARATIONS 2022. [DOI: 10.3390/separations9020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chiral pesticides with S atoms as asymmetric centers are gaining great importance in the search for new pesticides with new modes of action. As for the rest of the chiral pesticides, the determination of the stereoisomers separately has become crucial in the environmental risks assessment of these pesticides. Therefore, the development of suitable extraction and clean-up methods as well as efficient stereoselective analytical techniques for stereoisomers determination in environmental samples is essential. Currently, liquid/solid phase extraction, microextraction, and QuEChERS-based methods are most commonly used to obtain chiral pesticides from environmental samples. Gas, liquid, and supercritical fluid chromatography together with capillary electrophoresis techniques are the most important for the determination of the stereoisomers of chiral pesticides containing S atoms in its structure. In this study, all these techniques are briefly reviewed, and the advantages and disadvantages of each are discussed
Collapse
|
2
|
Pascual-Caro S, Borrull F, Aguilar C, Calull M. Comparison of different chiral selectors for the enantiomeric determination of amphetamine-type substances in human urine by solid-phase extraction followed by capillary electrophoresis-tandem mass spectrometry. Electrophoresis 2021; 43:437-445. [PMID: 34652814 DOI: 10.1002/elps.202100231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
The present study develops a method for the enantioseparation of a group of amphetamines and their metabolites in urine by CE coupled to MS/MS (CE-MS/MS). Amphetamines present a chiral center and thus two enantiomers, which is important from a toxicological point of view because they may have different pharmacokinetic and pharmacological properties. It is therefore essential to find suitable methods to distinguish both enantiomers. Today the use of CE is becoming more important in this field since, with the simple addition of a chiral selector to the background electrolyte, the enantioseparation can easily be achieved. However, when CE is coupled to MS, the use of volatile chiral selectors and compatible background electrolytes or other strategies such as the countercurrent migration approach are required to avoid contamination of the ion source from nonvolatile species. In the present study, we use the latter strategy to evaluate six different chiral selectors using CE-MS/MS. As a sample pre-treatment, two cationic-exchange sorbents-Oasis WCX and Oasis MCX-are compared for the urine pre-treatment. Using this method, it was possible to achieve the complete chiral separation of the amphetamines under study with detection limits ranging between 0.8 and 1.5 ng/mL and method quantification limits between 2.0 and 8.0 ng/mL. Matrix-matched calibration curves up to 150 ng/mL were used to cover the usual concentration ranges at which amphetamines have generally been found in toxicological and forensic analyses.
Collapse
Affiliation(s)
- Sergi Pascual-Caro
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carme Aguilar
- Serra Hunter Professor, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel˙lí Domingo, 1, Tarragona, 43007, Spain
| | - Marta Calull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Oliveira RV, Simionato AVC, Cass QB. Enantioselectivity Effects in Clinical Metabolomics and Lipidomics. Molecules 2021; 26:molecules26175231. [PMID: 34500665 PMCID: PMC8433918 DOI: 10.3390/molecules26175231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolomics and lipidomics have demonstrated increasing importance in underlying biochemical mechanisms involved in the pathogenesis of diseases to identify novel drug targets and/or biomarkers for establishing therapeutic approaches for human health. Particularly, bioactive metabolites and lipids have biological activity and have been implicated in various biological processes in physiological conditions. Thus, comprehensive metabolites, and lipids profiling are required to obtain further advances in understanding pathophysiological changes that occur in cells and tissues. Chirality is one of the most important phenomena in living organisms and has attracted long-term interest in medical and natural science. Enantioselective separation plays a pivotal role in understanding the distribution and physiological function of a diversity of chiral bioactive molecules. In this context, it has been the goal of method development for targeted and untargeted metabolomics and lipidomic assays. Herein we will highlight the benefits and challenges involved in these stereoselective analyses for clinical samples.
Collapse
Affiliation(s)
- Regina V. Oliveira
- SEPARARE-Núcleo de Pesquisa em Cromatografia, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos 13565-905, SP, Brazil;
| | - Ana Valéria C. Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil;
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Quezia B. Cass
- SEPARARE-Núcleo de Pesquisa em Cromatografia, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos 13565-905, SP, Brazil;
- Correspondence: ; Tel.: +55-16-3351-8087
| |
Collapse
|
4
|
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021; 42:38-57. [PMID: 32914880 PMCID: PMC7821218 DOI: 10.1002/elps.202000151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.
Collapse
Affiliation(s)
- Nicky de Koster
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Charles P. Clark
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
5
|
Crown ethers as shift reagents in peptide epimer differentiation –conclusions from examination of ac-(H)FRW-NH2 petide sequences. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12127-020-00271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractCrown ethers with different ring sizes and substituents (18-crown-6, dibenzo-18-crown-6, dicyclohexano-18-crown-6, a chiral tetracarboxylic acid-18-crown-6 ether, dibenzo-21-crown-7, and dibenzo-30-crown-10) were evaluated as shift reagents to differentiate epimeric model peptides (tri-and tetrapeptides) using ion mobility mass spectrometry (IM-MS). The stable associates of peptide epimers with crown ethers were detected and examined using traveling-wave ion mobility time-of-flight mass spectrometer (Synapt G2-S HDMS) equipped with an electrospray ion source. The overall decrease of the epimer separation upon crown ether complexation was observed. The increase of the effectiveness of the microsolvation of a basic moiety - guanidine or ammonium group in the peptide had no or little effect on the epimer discrimination. Any increase of the epimer separation, which referred to the specific association mode between crown substituents and a given peptide sequence, was drastically reduced for the longer peptide sequence (tetrapeptide). The obtained results suggest that the application of the crown ethers as shift reagents in ion mobility mass spectrometry is limited to the formation of complexes differing in stoichiometry rather than it refers to a specific coordination mode between a crown ether and a peptide molecule.
Collapse
|
6
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Yuan B, Wu H, Sanders T, McCullum C, Zheng Y, Tchounwou PB, Liu YM. Chiral capillary electrophoresis-mass spectrometry of 3,4-dihydroxyphenylalanine: evidence for its enantioselective metabolism in PC-12 nerve cells. Anal Biochem 2011; 416:191-5. [PMID: 21683678 DOI: 10.1016/j.ab.2011.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 11/26/2022]
Abstract
A fully automated chiral capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) method was developed for enantiomeric quantification of 3,4-dihydroxyphenylalanine (DOPA) and its precursors, phenylalanine (Phe) and tyrosine (Tyr). To avoid MS source contamination, a negatively charged chiral selector, sulfated β-cyclodextrin (sulfated β-CD), that migrated away from the detector was used in combination with the partial filling technique. The six stereoisomers were simultaneously quantified in less than 12 min. Detection limits were 0.48 and 0.51 μM for l- and d-DOPA enantiomers, respectively. Assay reproducibility values (relative standard deviations [RSDs], n=6) were 4.43, 3.15, 4.91, 5.16, 3.96, and 3.25% for l- and d-DOPA, l- and d-Tyr, and l- and d-Phe at 10 μM, respectively. Thanks to the high enantioseparation efficiency, detection of trace d-DOPA in l-/d-DOPA mixtures could be achieved. The assay was employed to study the metabolism of DOPA, a well-known therapeutic drug for treating Parkinson's disease. It was found that l-DOPA was metabolized effectively in PC-12 cells. Approximately 88% of l-DOPA disappeared after incubation at a cell density of 2×10(6)cells/ml for 3 h. However, d-DOPA coexisting with l-DOPA in the incubation solution remained intact. The enantiospecific metabolism of DOPA in this neuronal model was demonstrated.
Collapse
Affiliation(s)
- Baiqing Yuan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Wu H, Yuan B, Liu YM. Chiral capillary electrophoresis-mass spectrometry of tetrahydroisoquinoline-derived neurotoxins: observation of complex stereoisomerism. J Chromatogr A 2011; 1218:3118-23. [PMID: 21470616 PMCID: PMC3088083 DOI: 10.1016/j.chroma.2011.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/08/2011] [Accepted: 03/14/2011] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that certain 1,2,3,4-tetrahydroisoquinoline derivatives (TIQs) are neurotoxins inducing Parkinsonism. Further, individual enantiomers of these toxins such as (R/S)-N-methylsalsolinol ((R/S)-NMSal) possess distinct neurotoxicological properties. In this work, a chiral capillary electrophoresis (CE) method with electrospray ionization-tandem mass spectrometric (ESI-MS/MS) detection was developed for the quantification of TIQ enantiomers. Enantioseparation was achieved with sulfated β-cyclodextrin (sulfated β-CD) as chiral selector. To avoid any potential contamination of MS ionization source by the non-volatile chiral selector, partial filling technique was deployed in the CE separation. TIQ derivatives, including (R/S)-6,7-dihydroxy-1-methy-TIQ (salsolinol, Sal), (R/S)-1-benzyl-TIQ (BTIQ), and (R/S)-NMSal, were base-line resolved with resolution values (R) ranging from 3 (for Sal) to 4.5 (for BTIQ), which were much better than those reported previously by HPLC methods. ESI-MS/MS detection of the resolved TIQ enantiomers was specific and sensitive (LOD=1.2 μM for Sal enantiomers). The proposed chiral CE-MS/MS method was used to study in vitro formation of (R/S)-NMSal. It was found that NMSal was formed from the incubation of epinine (a dopamine metabolite) with acetaldehyde (a metabolite of alcohol). More interestingly, four isomers of NMSal were separated and detected in the incubation solution. They were identified as (R)-e.e-NMSal, (R)-e.a-NMSal, (S)-e.e-NMSal, and (S)-e.a-NMSal. This was the first lab evidence that this Parkinsonian neurotoxin exists in multiple isomeric forms.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39110, USA
| | | | | |
Collapse
|