1
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Ahmed TI, Ali S. The enduring interdependence of shotgun and targeted proteomics in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
3
|
He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics Clin Appl 2022; 16:e2100097. [PMID: 35490333 DOI: 10.1002/prca.202100097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
In the context of precision medicine, disease treatment requires individualized strategies based on the underlying molecular characteristics to overcome therapeutic challenges posed by heterogeneity. For this purpose, it is essential to develop new biomarkers to diagnose, stratify, or possibly prevent diseases. Plasma is an available source of biomarkers that greatly reflects the physiological and pathological conditions of the body. An increasing number of studies are focusing on proteins and peptides, including many involving the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), and proteomics and peptidomics techniques are emerging as critical tools for developing novel precision medicine preventative measures. Excitingly, the emerging plasma proteomics and peptidomics toolbox exhibits a huge potential for studying pathogenesis of diseases (e.g., COVID-19 and cancer), identifying valuable biomarkers and improving clinical management. However, the enormous complexity and wide dynamic range of plasma proteins makes plasma proteome profiling challenging. Herein, we summarize the recent advances in plasma proteomics and peptidomics with a focus on their emerging roles in COVID-19 and cancer research, aiming to emphasize the significance of plasma proteomics and peptidomics in clinical applications and precision medicine.
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China.,Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
O'Reilly EL, Horvatić A, Kuleš J, Gelemanović A, Mrljak V, Huang Y, Brady N, Chadwick CC, Eckersall PD, Ridyard A. Faecal proteomics in the identification of biomarkers to differentiate canine chronic enteropathies. J Proteomics 2021; 254:104452. [PMID: 34958965 DOI: 10.1016/j.jprot.2021.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
Canine chronic enteropathy (CCE) is a collective term used to describe a group of idiopathic enteropathies of dogs that result in a variety of clinical manifestations of intestinal dysfunction. Clinical stratification into food-responsive enteropathy (FRE) or non-food responsive chronic inflammatory enteropathy (CIE), is made retrospectively based on response to treatments. Faecal extracts from those with a FRE (n = 5) and those with non-food responsive chronic inflammatory enteropathies (CIE) (n = 6) were compared to a healthy control group (n = 14) by applying TMT-based quantitative proteomic approach. Many of the proteins with significant differential abundance between groups were pancreatic or intestinal enzymes with pancreatitis-associated protein (identified as REG3α) and pancreatic M14 metallocarboxypeptidase proteins carboxypeptidase A1 and B identified as being of significantly increased abundance in the CCE group. The reactome analysis revealed the recycling of bile acids and salts and their metabolism to be present in the FRE group, suggesting a possible dysbiotic aetiology. Several acute phase proteins were significantly more abundant in the CCE group with the significant increase in haptoglobin in the CIE group especially notable. Further research of these proteins is needed to fully assess their clinical utility as faecal biomarkers for differentiating CCE cases. SIGNIFICANCE: The identification and characterisation of biomarkers that differentiate FRE from other forms of CIE would prove invaluable in streamlining clinical decision-making and would avoid costly and invasive investigations and delays in implementing effective treatment. Many of the proteins described here, as canine faecal proteins for the first time, have been highlighted in previous human and murine inflammatory bowl disease (IBD) studies initiating a new chapter in canine faecal biomarker research, where early and non-invasive biomarkers for early clinical stratification of CCE cases are needed. Pancreatitis-associated protein, pancreatic M14 metallocarboxypeptidase along with carboxypeptidase A1 and B are identified as being of significantly increased abundance in the CCE groups. Several acute phase proteins, were significantly more abundant in the CCE group notably haptoglobin in dogs with inflammatory enteropathy. The recognition of altered bile acid metabolism in the reactome analysis in the FRE group is significant in CCE which is a complex condition incorporating of immunological, dysbiotic and faecal bile acid dysmetabolism. Both proteomics and immunoassays will enable the characterisation of faecal APPs as well as other inflammatory and immune mediators, and the utilisation of assays, validated for use in analysis of faeces of veterinary species will enable clinical utilisation of faecal matrix to be fully realised.
Collapse
Affiliation(s)
- Emily L O'Reilly
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK. Emily.O'
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia; Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Josipa Kuleš
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK.
| | - Nicola Brady
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK.
| | | | - P David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK; Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Alison Ridyard
- School of Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
5
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Dai B, Yin C, Wu J, Li W, Zheng L, Lin F, Han X, Fu Y, Zhang D, Zhuang S. A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. LAB ON A CHIP 2021; 21:143-153. [PMID: 33185235 DOI: 10.1039/d0lc00944j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microfluidics drives technological advancement in point-of-care (POC) bioanalytical diagnostics towards portability, fast response and low cost. In most microfluidic bioanalytical applications, flowing antigen/antibody reacts with immobilized antibody/antigen at a constant flux; it is difficult to reach a compromise to simultaneously realize sufficient time for the antigen-antibody interaction and short time for the entire assay. Here, we present a pump-free microfluidic chip, in which flow is self-initialized by capillary pumping and continued by imbibition of a filter paper. Microfluidic units in teardrop shape ensure that flow passes through the reaction areas at a reduced flux to facilitate the association between antigen and antibody and speeds up after the reaction areas. By spotting different antibodies into the reaction area, four types of biomarkers can be measured simultaneously in one microfluidic chip. Moreover, a small-sized instrument was developed for chemiluminescence detection and signal analysis. The system was validated by testing four biomarkers of colorectal cancer using plasma samples from patients. The assay took about 20 minutes. The limit of detection is 0.89 ng mL-1, 1.72 ng mL-1, 3.62 U mL-1 and 1.05 U mL-1 for the assays of carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 125 and carbohydrate antigen 19-9, respectively. This flux-adaptable and self-contained microfluidic platform is expected to be useful in various POC disease-monitoring applications.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nice EC. The separation sciences, the front end to proteomics: An historical perspective. Biomed Chromatogr 2020; 35:e4995. [DOI: 10.1002/bmc.4995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Edouard C. Nice
- Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
| |
Collapse
|
8
|
Qazi AS, Akbar S, Saeed RF, Bhatti MZ. Translational Research in Oncology. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:261-311. [DOI: 10.1007/978-981-15-1067-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Nice EC. The Wonderful World of Poo: The Turdome and Beyond. Aust J Chem 2020. [DOI: 10.1071/ch19225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Defecate: it is something we all do, it is something we joke about, yet for many in real life it is a subject that is taboo. However, it is now being realised that faeces are a veritable scientific goldmine, have many potential uses, and may even save your life! In this article I will review the history behind the use of faecal material and look at some of its emerging playing fields, in particular its role in medical diagnosis. I will discuss faecal proteomics and other omics technologies (Proteogenomics: The Omics Pipeline), including studies on the microbiome, in order to understand, diagnose, and treat gastrointestinal tract pathologies and other diseases, and show how these technologies will play a role in the move towards personalized medicine.
Collapse
|
10
|
He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019; 495:611-624. [PMID: 31176645 DOI: 10.1016/j.cca.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Oncoproteomics is the systematic study of cancer samples using omics technologies to detect changes implicated in tumorigenesis. Recent progress in oncoproteomics is already opening new avenues for the identification of novel biomarkers for early clinical stage cancer detection, targeted molecular therapies, disease monitoring, and drug development. Such information will lead to new understandings of cancer biology and impact dramatically on the future care of cancer patients. In this review, we will summarize the advantages and limitations of the key technologies used in (onco)proteogenomics, (the Omics Pipeline), explain how they can assist us in understanding the biology behind the overarching "Hallmarks of Cancer", discuss how they can advance the development of precision/personalised medicine and the future directions in the field.
Collapse
Affiliation(s)
- Yujia He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Abidali Mohamedali
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia.
| | - Edouard C Nice
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| |
Collapse
|
11
|
Metaproteomics of fecal samples of Crohn's disease and Ulcerative Colitis. J Proteomics 2019; 201:93-103. [PMID: 31009805 DOI: 10.1016/j.jprot.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic inflammatory bowel diseases (IBD) of the gastrointestinal tract. This study used non-invasive LC-MS/MS to find disease specific microbial and human proteins which might be used later for an easier diagnosis. Therefore, 17 healthy controls, 11 CD patients and 14 UC patients but also 13 Irritable Bowel Disease (IBS) patients, 8 Colon Adenoma (CA) patients, and 8 Gastric Carcinoma (GCA) patients were investigated. The proteins were extracted from the fecal samples with liquid phenol in a ball mill. Subsequently, the proteins were digested tryptically to peptides and analyzed by an Orbitrap LC-MS/MS. For protein identification and interpretation of taxonomic and functional results, the MetaProteomeAnalyzer software was used. Cluster analysis and non-parametric test (analysis of similarities) separated healthy controls from patients with CD and UC as well as from patients with GCA. Among others, CD and UC correlated with an increase of neutrophil extracellular traps and immune globulins G (IgG). In addition, a decrease of human IgA and the transcriptional regulatory protein RprY from Bacillus fragilis was found for CD and UC. A specific marker in feces for CD was an increased amount of the human enzyme sucrose-isomaltase. SIGNIFICANCE: Crohn's Disease and Ulcerative Colitis are chronic inflammatory diseases of the gastrointestinal tract, whose diagnosis required comprehensive medical examinations including colonoscopy. The impact of the microbial communities in the gut on the pathogenesis of these diseases is poorly understood. Therefore, this study investigated the impact of gut microbiome on these diseases by a metaproteome approach, revealing several disease specific marker proteins. Overall, this indicated that fecal metaproteomics has the potential to be useful as non-invasive tool for a better and easier diagnosis of both diseases.
Collapse
|
12
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Lin H, He QY, Shi L, Sleeman M, Baker MS, Nice EC. Proteomics and the microbiome: pitfalls and potential. Expert Rev Proteomics 2018; 16:501-511. [PMID: 30223687 DOI: 10.1080/14789450.2018.1523724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Human symbiotic microbiota are now known to play important roles in human health and disease. Significant progress in our understanding of the human microbiome has been driven by recent technological advances in the fields of genomics, transcriptomics, and proteomics. As a complementary method to metagenomics, proteomics is enabling detailed protein profiling of the microbiome to decipher its structure and function and to analyze its relationship with the human body. Fecal proteomics is being increasingly applied to discover and validate potential health and disease biomarkers, and Therapeutic Goods Administration (TGA)-approved instrumentation and a range of clinical assays are being developed that will collectively play key roles in advancing personalized medicine. Areas covered: This review will introduce the complexity of the microbiome and its role in health and disease (in particular the gastrointestinal tract or gut microbiome), discuss current genomic and proteomic methods for studying this system, including the discovery of potential biomarkers, and outline the development of clinically accepted protocols leading to personalized medicine. Expert commentary: Recognition of the important role the microbiome plays in both health and disease is driving current research in this key area. A proteogenomics approach will be essential to unravel the biologies underlying this complex network.
Collapse
Affiliation(s)
- Huafeng Lin
- a Department of Biotechnology , College of Life Science and Technology, Jinan University , Guangzhou , Guangdong , China.,b Institute of Food Safety and Nutrition Research , Jinan University , Guangzhou , China
| | - Qing-Yu He
- c Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou , China
| | - Lei Shi
- b Institute of Food Safety and Nutrition Research , Jinan University , Guangzhou , China
| | - Mark Sleeman
- d Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Mark S Baker
- e Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Edouard C Nice
- f Department of Biochemistry and Molecular Biology , Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
14
|
Jin P, Lan J, Wang K, Baker MS, Huang C, Nice EC. Pathology, proteomics and the pathway to personalised medicine. Expert Rev Proteomics 2018; 15:231-243. [PMID: 29310484 DOI: 10.1080/14789450.2018.1425618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ping Jin
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, P.R. China
| | - Jiang Lan
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, P.R. China
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Canhua Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, P.R. China
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia and Visiting Professor, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
15
|
Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics 2017; 14:445-459. [PMID: 28361558 DOI: 10.1080/14789450.2017.1314786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Fecal proteomics has gained increased prominence in recent years. It can provide insights into the diagnosis and surveillance of many bowel diseases by both identifying potential biomarkers in stool samples and helping identify disease-related pathways. Fecal proteomics has already shown its potential for the discovery and validation of biomarkers for colorectal cancer screening, and the analysis of fecal microbiota by MALDI-MS for the diagnosis of a range of bowel diseases is gaining clinical acceptance. Areas covered: Based on a comprehensive analysis of the current literature, we introduce the range of sensitive and specific proteomics methods which comprise the current 'Proteomics Toolbox', explain how the integration of fecal proteomics with data processing/bioinformatics has been used for the identification of potential biomarkers for both CRC and other gut-related pathologies and analysis of the fecal microbiome, outline some of the current fecal assays in current clinical practice and introduce the concept of personalised medicine which these technologies will help inform. Expert commentary: Integration of fecal proteomics with other proteomics and genomics strategies as well as bioinformatics is paving the way towards personalised medicine, which will bring with it improved global healthcare.
Collapse
Affiliation(s)
- Ping Jin
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Kui Wang
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Canhua Huang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Edouard C Nice
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
16
|
Faria SS, Morris CFM, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol 2017; 7:13. [PMID: 28265552 PMCID: PMC5316539 DOI: 10.3389/fonc.2017.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease. Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples other than plasma and serum, which are generally aimed toward prognostic markers. Interestingly, the most common type of targeted approach is based on stable isotope dilution-selected reaction monitoring protocols for quantification of the target molecules. Overall, this reinforces that notion that targeted proteomics has already started to fulfill its role as a groundbreaking strategy that may enable researchers to catapult the number of viable, effective, and validated biomarkers in cancer clinical practice.
Collapse
Affiliation(s)
- Sara S Faria
- Mastology Program, Federal University of Uberlandia (UFU) , Uberlandia , Brazil
| | - Carlos F M Morris
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Adriano R Silva
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Micaella P Fonseca
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patrice Forget
- Department of Anesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit of Brussel , Brussels , Belgium
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| |
Collapse
|
17
|
Bowden M. The Cancer Secretome. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:95-120. [DOI: 10.1007/978-3-319-45397-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Ang CS, Baker MS, Nice EC. Mass Spectrometry-Based Analysis for the Discovery and Validation of Potential Colorectal Cancer Stool Biomarkers. Methods Enzymol 2016; 586:247-274. [PMID: 28137566 DOI: 10.1016/bs.mie.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality for both men and women, and the second leading cause of cancer death for men and women combined. If detected early, before metastasis has occurred, survival following surgical resection of the tumor is >90%. Early detection is therefore critical for effective disease surveillance. Unfortunately, current biomarker assays lack the necessary sensitivity and specificity for reliable early disease detection. Development of new robust, non- or minimally invasive specific and sensitive biomarkers or panels with improved compliance and performance is therefore urgently required. The use of fecal samples offers several advantages over other clinical biospecimens (e.g., plasma or serum) as a source of CRC biomarkers, including: collection is noninvasive, the test can be performed at home, one is not sample limited, and the stool effectively samples the entire length of the inner bowel wall contents (including tumor) as it passes down the gastrointestinal tract. Recent advances in mass spectrometry now facilitate both the targeted discovery and validation of potential CRC biomarkers. We describe, herein, detailed protocols that can be used to mine deeply into the fecal proteome to reveal candidate proteins, identify proteotypic/unitypic peptides (i.e., peptides found in only a single known human protein that serve to identify that protein) suitable for sensitive and specific quantitative multiplexed analysis, and undertake high-throughput analysis of clinical samples. Finally, we discuss future directions that may further position this technology to support the current switch in translation research toward personalized medicine.
Collapse
Affiliation(s)
- C S Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - M S Baker
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - E C Nice
- Monash University, Clayton, VIC, Australia.
| |
Collapse
|
19
|
Huang Z, Ma L, Huang C, Li Q, Nice EC. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 2016; 17. [PMID: 27550791 DOI: 10.1002/pmic.201600240] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Linguang Ma
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Qifu Li
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
20
|
Zhou L, Wang K, Li Q, Nice EC, Zhang H, Huang C. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives. Expert Rev Proteomics 2016; 13:367-81. [PMID: 26923776 DOI: 10.1586/14789450.2016.1159959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Qifu Li
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Edouard C Nice
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| |
Collapse
|
21
|
Ma H, Chen G, Guo M. Mass spectrometry based translational proteomics for biomarker discovery and application in colorectal cancer. Proteomics Clin Appl 2016; 10:503-15. [PMID: 26616366 DOI: 10.1002/prca.201500082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death in the world. Clinically, early detection of the disease is the most effective approach to tackle this tough challenge. Discovery and development of reliable and effective diagnostic tools for the assessment of prognosis and prediction of response to drug therapy are urgently needed for personalized therapies and better treatment outcomes. Among many ongoing efforts in search for potential CRC biomarkers, MS-based translational proteomics provides a unique opportunity for the discovery and application of protein biomarkers toward better CRC early detection and treatment. This review updates most recent studies that use preclinical models and clinical materials for the identification of CRC-related protein markers. Some new advances in the development of CRC protein markers such as CRC stem cell related protein markers, SRM/MRM-MS and MS cytometry approaches are also discussed in order to address future directions and challenges from bench translational research to bedside clinical application of CRC biomarkers.
Collapse
Affiliation(s)
- Hong Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China.,Haematology and Oncology Division, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
22
|
Zhou L, Li Q, Wang J, Huang C, Nice EC. Oncoproteomics: Trials and tribulations. Proteomics Clin Appl 2015; 10:516-31. [PMID: 26518147 DOI: 10.1002/prca.201500081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Qifu Li
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Jiandong Wang
- Department of Biomedical; Chengdu Medical College; Chengdu Sichuan Province P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Edouard C. Nice
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
23
|
Pernikářová V, Bouchal P. Targeted proteomics of solid cancers: from quantification of known biomarkers towards reading the digital proteome maps. Expert Rev Proteomics 2015; 12:651-67. [PMID: 26456120 DOI: 10.1586/14789450.2015.1094381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The concept of personalized medicine includes novel protein biomarkers that are expected to improve the early detection, diagnosis and therapy monitoring of malignant diseases. Tissues, biofluids, cell lines and xenograft models are the common sources of biomarker candidates that require verification of clinical value in independent patient cohorts. Targeted proteomics - based on selected reaction monitoring, or data extraction from data-independent acquisition based digital maps - now represents a promising mass spectrometry alternative to immunochemical methods. To date, it has been successfully used in a high number of studies answering clinical questions on solid malignancies: breast, colorectal, prostate, ovarian, endometrial, pancreatic, hepatocellular, lung, bladder and others. It plays an important role in functional proteomic experiments that include studying the role of post-translational modifications in cancer progression. This review summarizes verified biomarker candidates successfully quantified by targeted proteomics in this field and directs the readers who plan to design their own hypothesis-driven experiments to appropriate sources of methods and knowledge.
Collapse
Affiliation(s)
- Vendula Pernikářová
- a Masaryk University , Faculty of Science, Department of Biochemistry , Kotlářská 2, 61137 Brno , Czech Republic
| | - Pavel Bouchal
- a Masaryk University , Faculty of Science, Department of Biochemistry , Kotlářská 2, 61137 Brno , Czech Republic.,b Masaryk Memorial Cancer Institute , Regional Centre for Applied Molecular Oncology , Žlutý kopec 7, 65653 Brno , Czech Republic
| |
Collapse
|
24
|
Cantor DI, Nice EC, Baker MS. Recent findings from the human proteome project: opening the mass spectrometry toolbox to advance cancer diagnosis, surveillance and treatment. Expert Rev Proteomics 2015; 12:279-93. [DOI: 10.1586/14789450.2015.1040770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Mahboob S, Ahn SB, Cheruku HR, Cantor D, Rennel E, Fredriksson S, Edfeldt G, Breen EJ, Khan A, Mohamedali A, Muktadir MG, Ranganathan S, Tan SH, Nice E, Baker MS. A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. Clin Proteomics 2015; 12:10. [PMID: 25987887 PMCID: PMC4435647 DOI: 10.1186/s12014-015-9081-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
Background Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection. Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently found in plasma at very low concentration (pg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 μL) obtained from 75 patients with Dukes’ staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion criteria) were assayed for expression of 92 human proteins employing the Proseek® Multiplex Oncology I proximity extension assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex Pro™ human cytokine 27-plex immunoassay. Results Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage. Conclusions CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes’ A + B) and malignant (Dukes’ C + D) stages. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9081-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sadia Mahboob
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Seong Beom Ahn
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Harish R Cheruku
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - David Cantor
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Emma Rennel
- Olink Bioscience, Dag Hammarskjölds Väg, 54A, 75183 Uppsala, Sweden
| | | | | | - Edmond J Breen
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Abidali Mohamedali
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Md Golam Muktadir
- School of Science and Health, University of Western Sydney, NSW, Australia
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Sock-Hwee Tan
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800 Australia
| | - Mark S Baker
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| |
Collapse
|
26
|
Wang K, Huang C, Nice E. Recent advances in proteomics: towards the human proteome. Biomed Chromatogr 2015; 28:848-57. [PMID: 24861753 DOI: 10.1002/bmc.3157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
After the successful completion of the Human Genome project in 2003, the next major challenge was to understand when and where the encoded proteins were expressed, and to generate a map of the complex, interconnected pathways, networks and molecular systems (the human proteome) that, taken together, control the workings of all cells, tissues, organs and organisms. Proteomics will be fundamental for such studies. This review summarizes the key discoveries that laid down the foundations for proteomics as we now know it, and describes key recent technological advances that will undoubtedly contribute to achieving the initial goal of the Human Proteome Organization of identifying and characterizing at least one protein product and representative post-translational modifications, single amino acid polymorphisms and splice variant isoforms from the 20,300 human protein-coding genes within the next 10 years. Successful unraveling of the human proteome will undoubtedly improve our understanding of human biology at the cellular level and lay the foundations for improved diagnostic, prognostic, therapeutic and preventive medical outcomes as we enter the era of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | |
Collapse
|
27
|
Álvarez-Chaver P, Otero-Estévez O, Páez de la Cadena M, Rodríguez-Berrocal FJ, Martínez-Zorzano VS. Proteomics for discovery of candidate colorectal cancer biomarkers. World J Gastroenterol 2014; 20:3804-3824. [PMID: 24744574 PMCID: PMC3983438 DOI: 10.3748/wjg.v20.i14.3804] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers.
Collapse
|
28
|
Wang K, Huang C, Nice EC. Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Rev Proteomics 2014; 11:179-205. [PMID: 24611605 DOI: 10.1586/14789450.2014.894466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in females and the third in males. Since CRC is often diagnosed at an advanced stage when prognosis is poor, identification of biomarkers for early diagnosis is urgently required. Recent advances in proteomics, genomics and transcriptomics have facilitated high-throughput profiling of data generated from CRC-related genes and proteins, providing a window of information for biomarker discovery and validation. However, transfer of candidate biomarkers from bench to bedside remains a dilemma. In this review, we will discuss emerging proteomic technologies and highlight various sample types utilized for proteomics-based identification of CRC biomarkers. Moreover, recent breakthroughs in genomics and transcriptomics for the identification of CRC biomarkers, with particular emphasis on the merits of emerging methylomic and miRNAomic strategies, will be discussed. Integration of proteomics, genomics and transcriptomics will facilitate the discovery and validation of CRC biomarkers leading to the emergence of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, 610041 , P.R. China
| | | | | |
Collapse
|
29
|
Martínez-Aguilar J, Chik J, Nicholson J, Semaan C, McKay MJ, Molloy MP. Quantitative mass spectrometry for colorectal cancer proteomics. Proteomics Clin Appl 2014; 7:42-54. [PMID: 23027722 DOI: 10.1002/prca.201200080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022]
Abstract
This review documents the uses of quantitative MS applied to colorectal cancer (CRC) proteomics for biomarker discovery and molecular pathway profiling. Investigators are adopting various labeling and label-free MS approaches to quantitate differential protein levels in cells, tumors, and plasma/serum. We comprehensively review recent uses of this technology to examine mouse models of CRC, CRC cell lines, their secretomes and subcellular fractions, CRC tumors, CRC patient plasma/serum, and stool samples. For biomarker discovery these approaches are uncovering proteins with potential diagnostic and prognostic utility, while in vitro cell culture experiments are characterizing proteomic and phosphoproteomic responses to disrupted signaling pathways due to mutations or to inhibition of drugable enzymes.
Collapse
Affiliation(s)
- Juan Martínez-Aguilar
- Australian Proteome Analysis Facility (APAF), Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. ScientificWorldJournal 2014; 2014:260348. [PMID: 24550697 PMCID: PMC3914447 DOI: 10.1155/2014/260348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/08/2013] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Nina Kocevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
D’Alessandro A, Zolla L. Proteomics and metabolomics in cancer drug development. Expert Rev Proteomics 2014; 10:473-88. [DOI: 10.1586/14789450.2013.840440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
|
33
|
Kato I, Startup J, Ram JL. Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Kolmeder CA, de Vos WM. Metaproteomics of our microbiome - developing insight in function and activity in man and model systems. J Proteomics 2013; 97:3-16. [PMID: 23707234 DOI: 10.1016/j.jprot.2013.05.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022]
Abstract
We are all colonized by a large microbiome, a complex set of microbes that have intimate associations with us. Culture-based approaches have provided insights in the complexity of the microbial communities living on surfaces inside and outside the body. However, the application of high-throughput sequencing technologies has identified large numbers of community members at both the phylogenetic and the (meta-)genome level. The latter allowed defining a reference set of several millions of mainly bacterial genes and provided the basis for developing approaches to target the activity and function of the human microbiome with proteomic techniques. Moreover, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometers have promoted the field of metaproteomics, the study of the collective proteome of microbial communities. We here review the approaches that have been developed to study the human metaproteomes, focusing on intestinal tract and body fluids. Moreover, we complement these by considering metaproteomic studies in mouse and other model systems offering the option to study single species or simple consortia. Finally, we discuss present and future avenues that may be used to advance the application of metaproteomic approaches to further improve our understanding of the microbes inside and around our body. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Carolin A Kolmeder
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FIN-00014 Helsinki, Finland.
| | - Willem M de Vos
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FIN-00014 Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, P.O. Box 21, FIN-00014 Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
35
|
de Wit M, Fijneman RJ, Verheul HM, Meijer GA, Jimenez CR. Proteomics in colorectal cancer translational research: Biomarker discovery for clinical applications. Clin Biochem 2013; 46:466-79. [PMID: 23159294 DOI: 10.1016/j.clinbiochem.2012.10.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/22/2022]
|
36
|
The potential for clinical applications using a new ionization method combined with ion mobility spectrometry-mass spectrometry. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12127-013-0131-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Schaaij-Visser TBM, de Wit M, Lam SW, Jiménez CR. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2242-58. [PMID: 23376433 DOI: 10.1016/j.bbapap.2013.01.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/20/2022]
Abstract
Despite major improvements on the knowledge and clinical management, cancer is still a deadly disease. Novel biomarkers for better cancer detection, diagnosis and treatment prediction are urgently needed. Proteins secreted, shed or leaking from the cancer cell, collectively termed the cancer secretome, are promising biomarkers since they might be detectable in blood or other biofluids. Furthermore, the cancer secretome in part represents the tumor microenvironment that plays a key role in tumor promoting processes such as angiogenesis and invasion. The cancer secretome, sampled as conditioned medium from cell lines, tumor/tissue interstitial fluid or tumor proximal body fluids, can be studied comprehensively by nanoLC-MS/MS-based approaches. Here, we outline the importance of current cancer secretome research and describe the mass spectrometry-based analysis of the secretome. Further, we provide an overview of cancer secretome research with a focus on the three most common cancer types: lung, breast and colorectal cancer. We conclude that the cancer secretome research field is a young, but rapidly evolving research field. Up to now, the focus has mainly been on the discovery of novel promising secreted cancer biomarker proteins. An interesting finding that merits attention is that in cancer unconventional secretion, e.g. via vesicles, seems increased. Refinement of current approaches and methods and progress in clinical validation of the current findings are vital in order to move towards applications in cancer management. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Tieneke B M Schaaij-Visser
- OncoProteomics Laboratory, Dept. of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Division of Molecular Genetics and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Mörtstedt H, Kåredal MH, Jönsson BAG, Lindh CH. Screening Method Using Selected Reaction Monitoring for Targeted Proteomics Studies of Nasal Lavage Fluid. J Proteome Res 2012; 12:234-47. [DOI: 10.1021/pr300802g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Harriet Mörtstedt
- Department of Laboratory Medicine, Lund, Division of
Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Monica H. Kåredal
- Department of Laboratory Medicine, Lund, Division of
Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Bo A. G. Jönsson
- Department of Laboratory Medicine, Lund, Division of
Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Christian H. Lindh
- Department of Laboratory Medicine, Lund, Division of
Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| |
Collapse
|
39
|
Boja ES, Rodriguez H. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 2012; 12:1093-110. [PMID: 22577011 DOI: 10.1002/pmic.201100387] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
Collapse
Affiliation(s)
- Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
40
|
Fan J, Mohareb F, Bond NJ, Lilley KS, Bessant C. MRMaid 2.0: mining PRIDE for evidence-based SRM transitions. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:483-8. [PMID: 22804252 DOI: 10.1089/omi.2011.0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Selected reaction monitoring (SRM) is becoming the tool of choice for targeted quantitative proteomics. The fundamental principle of proteomic SRM is that, for a given protein of interest, there is a set of peptides that are unique to that protein. The characteristic retention time (RT), and intact peptide m/z of these so-called proteotypic peptides are then programmed into the mass spectrometer, along with the m/z of high-intensity product ions for targeted quantitation. The particular combination of RT, peptide m/z, and product m/z for a given peptide is referred to as a transition. Selection of the most appropriate set of transitions for a given set of proteins is crucial to any SRM experiment. We previously developed the web-based MRMaid tool, which suggested the optimal transitions for a given human protein by mining spectral evidence from a small in-house database. In this article we present a completely new implementation of MRMaid, which offers substantial improvements over the original. The new version, MRMaid 2.0, uses spectra from the EBI's PRIDE database, which massively increases the coverage and quality of transitions. Transition lists can now be generated for multiple proteins simultaneously, edited within the web browser, and exported for laboratory use.
Collapse
Affiliation(s)
- Jun Fan
- Cranfield Bioinformatics Group, Cranfield Health, Cranfield University, Bedfordshire, UK
| | | | | | | | | |
Collapse
|
41
|
Ang CS, Binos S, Knight MI, Moate PJ, Cocks BG, McDonagh MB. Global Survey of the Bovine Salivary Proteome: Integrating Multidimensional Prefractionation, Targeted, and Glycocapture Strategies. J Proteome Res 2011; 10:5059-69. [DOI: 10.1021/pr200516d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ching-Seng Ang
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Steve Binos
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Matthew I Knight
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Peter J Moate
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Benjamin G Cocks
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Matthew B McDonagh
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| |
Collapse
|