1
|
Domingos IF, Carvalho LB, Lodeiro C, Gerivaz R, Prag G, Micaglio E, Muchtar E, Santos HM, Capelo JL. Dithiothreitol-based protein equalisation in the context of multiple myeloma: Enhancing proteomic analysis and therapeutic insights. Talanta 2024; 279:126589. [PMID: 39116730 DOI: 10.1016/j.talanta.2024.126589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
In this study, we employed the dithiothreitol-based protein equalisation technique and analytical proteomics to better understand myeloma diseases by comparing the proteomes of pellets and supernatants formed upon application of DTT on serum samples. The number of unique proteins found in pellets was 252 for healthy individuals and 223 for multiple myeloma patients. The comparison of these proteomes showed 97 dysregulated proteins. The unique proteins found for supernatants were 264 for healthy individuals and 235 for multiple myeloma patients. The comparison of these proteomes showed 87 dysregulated proteins. The analytical proteomic comparison of both groups of dysregulated proteins is translated into parallel dysregulated pathways, including chaperone-mediated autophagy and protein folding, addressing potential therapeutic interventions. Future research endeavours in personalised medicine should prioritize refining analytical proteomic methodologies using serum dithiothreitol-based protein equalisation to explore innovative therapeutic strategies. We highlight the advanced insights gained from this analytical strategy in studying multiple myeloma, emphasising its complex nature and the critical role of personalised, targeted analytical techniques in enhancing therapeutic efficacy in personalised medicine.
Collapse
Affiliation(s)
- Ines F Domingos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Praceta Jerónimo Dias, 2825-466., Caparica, Portugal
| | - Luis B Carvalho
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Praceta Jerónimo Dias, 2825-466., Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Praceta Jerónimo Dias, 2825-466., Caparica, Portugal
| | - Rita Gerivaz
- Serviço de Hematologia, Hospital Garcia de Orta, Almada, Portugal
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097, Milan, Italy
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Hugo M Santos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Praceta Jerónimo Dias, 2825-466., Caparica, Portugal; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Jose L Capelo
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Praceta Jerónimo Dias, 2825-466., Caparica, Portugal.
| |
Collapse
|
2
|
Mlinarić Z. Limitations in LC-MS/MS application for adagrasib and pembrolizumab quantification in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124354. [PMID: 39520880 DOI: 10.1016/j.jchromb.2024.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
An article by Harsha Shi et al. raises multiple concerns regarding sample preparation, the presence of the analyte in the analyzed solution, authenticity of the MS spectra, administration of drugs and blood collection, choice of internal standard, obtained pharmacokinetic parameters and usage of chromatographic column and solvents. While the research topic is interesting and the development of bioanalytical methods for novel drugs is crucial, this article does not seem to meet the analytical and methodological standards for the reliable determination of adagrasib and pembrolizumab in plasma samples. A detailed explanation is given in the letter.
Collapse
Affiliation(s)
- Zvonimir Mlinarić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Mondelo-Macía P, García-González J, León-Mateos L, Abalo A, Bravo S, Chantada Vazquez MDP, Muinelo-Romay L, López-López R, Díaz-Peña R, Dávila-Ibáñez AB. Identification of a Proteomic Signature for Predicting Immunotherapy Response in Patients With Metastatic Non-Small Cell Lung Cancer. Mol Cell Proteomics 2024; 23:100834. [PMID: 39216661 PMCID: PMC11474190 DOI: 10.1016/j.mcpro.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has improved survival rates in patients with cancer, but identifying those who will respond to treatment remains a challenge. Advances in proteomic technologies have enabled the identification and quantification of nearly all expressed proteins in a single experiment. Integrating mass spectrometry with high-throughput technologies has facilitated comprehensive analysis of the plasma proteome in cancer, facilitating early diagnosis and personalized treatment. In this context, our study aimed to investigate the predictive and prognostic value of plasma proteome analysis using the SWATH-MS (Sequential Window Acquisition of All Theoretical Mass Spectra) strategy in newly diagnosed patients with non-small cell lung cancer (NSCLC) receiving pembrolizumab therapy. We enrolled 64 newly diagnosed patients with advanced NSCLC treated with pembrolizumab. Blood samples were collected from all patients before and during therapy. A total of 171 blood samples were analyzed using the SWATH-MS strategy. Plasma protein expression in metastatic NSCLC patients prior to receiving pembrolizumab was analyzed. A first cohort (discovery cohort) was employed to identify a proteomic signature predicting immunotherapy response. Thus, 324 differentially expressed proteins between responder and non-responder patients were identified. In addition, we developed a predictive model and found a combination of seven proteins, including ATG9A, DCDC2, HPS5, FIL1L, LZTL1, PGTA, and SPTN2, with stronger predictive value than PD-L1 expression alone. Additionally, survival analyses showed an association between the levels of ATG9A, DCDC2, SPTN2 and HPS5 with progression-free survival (PFS) and/or overall survival (OS). Our findings highlight the potential of proteomic technologies to detect predictive biomarkers in blood samples from NSCLC patients, emphasizing the correlation between immunotherapy response and the idenfied protein set.
Collapse
Affiliation(s)
- Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Jorge García-González
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Luis León-Mateos
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - María Del Pilar Chantada Vazquez
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Rafael López-López
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain; Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS; Grupo de Medicina Xenomica-USC, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Ana B Dávila-Ibáñez
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain; CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain; Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Kim H, Cheon DH, Yang WS, Baek JH. Simultaneous Quantification of Apolipoprotein C-III O-Glycoforms by Protein-MRM. J Proteome Res 2023; 22:91-100. [PMID: 36412001 DOI: 10.1021/acs.jproteome.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein C-III (APOC-III) regulates triglyceride levels, associated with a risk of cardiovascular disease. One gene generates several proteoforms, each with a different molecular mass and a unique function. Unlike peptide multiple reaction monitoring (MRM), protein-MRM without digestion is required to analyze clinically relevant individual proteoforms. We developed a protein-MRM method without digestion to individually quantify APOC-III proteoforms in human serum. We optimized the protein-MRM method following 60% acetonitrile extraction with C18 filtration. Bovine serum and myoglobin served as supporting cushions and the internal standard during sample preparation, respectively. Furthermore, we evaluated the LOD, lower limit of quantification, linearity, accuracy, and precision. Good correlation compared with turbidimetric immunoassay (TIA) and peptide-MRM was observed using 30 clinical sera. Individual APOC-III O-glycoforms were identified by top-down proteomics and simultaneously quantified using the protein-MRM method. The sum abundance of APOC-III proteoforms was significantly correlated with TIA and peptide-MRM. Our protein-MRM method provides an affordable and rapid quantification of potential disease-specific proteoforms. Precise quantification of each proteoform allows investigators to identify novel biological roles potentially related to cardiovascular disease or novel biomarkers. We expect our protein-oriented method to be more clinically useful than antibody-based immunoassays and peptide-oriented MRM analysis, especially for quantification of a biomarker proteoform with certain post-translational modifications.
Collapse
Affiliation(s)
- Hyojin Kim
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Dong Huey Cheon
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Won Suk Yang
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| |
Collapse
|
5
|
Abstract
The discovery of clinically relevant biomarkers using gel-based proteomics has proven extremely challenging, principally because of the large dynamic range of protein abundances in biofluids such as blood and the fact that only a small number of proteins constitute the vast majority of total blood protein mass. Various separation, depletion, enrichment, and quantitative developments coupled with improvements in gel-based protein quantification technologies, specifically fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), have contributed to significant improvements in the detection and identification of lower abundance proteins. One of these enrichment technologies, ProteoMiner, is the focus of this chapter. The ProteoMiner technology utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but at the same time suppresses the concentration of high-abundance proteins in subsequent analysis.
Collapse
Affiliation(s)
- Sandra Murphy
- Charles River Laboratories, Saffron Walden, Essex, United Kingdom
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
6
|
Chantada-Vázquez MDP, Conde-Amboage M, Graña-López L, Vázquez-Estévez S, Bravo SB, Núñez C. Circulating Proteins Associated with Response and Resistance to Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14041087. [PMID: 35205837 PMCID: PMC8870308 DOI: 10.3390/cancers14041087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The goal of this study was to find circulating proteins that can be easily sampled and incorporated into a clinical setting to improve predictive treatment response in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy. We looked for potential biomarkers in serum, which we identified using two proteomics techniques: qualitative LC-MS/MS and a quantitative assay that assessed protein expression between responders and non-responders HER2-positive breast cancer patients to neoadjuvant chemotherapy. Abstract Despite the increasing use of neoadjuvant chemotherapy (NAC) in HER2-positive breast cancer (BC) patients, the clinical problem of predicting individual treatment response remains unanswered. Furthermore, the use of ineffective chemotherapeutic regimens should be avoided. Serum biomarker levels are being studied more and more for their ability to predict therapy response and aid in the development of personalized treatment regimens. This study aims to identify effective protein networks and biomarkers to predict response to NAC in HER2-positive BC patients through an exhaustive large-scale LC-MS/MS-based qualitative and quantitative proteomic profiling of serum samples from responders and non-responders. Serum samples from HER2-positive BC patients were collected before NAC and were processed by three methods (with and without nanoparticles). The qualitative analysis revealed differences in the proteomic profiles between responders and non-responders, mainly in proteins implicated in the complement and coagulation cascades and apolipoproteins. Qualitative analysis confirmed that three proteins (AFM, SERPINA1, APOD) were correlated with NAC resistance. In this study, we show that serum biomarker profiles can predict treatment response and outcome in the neoadjuvant setting. If these findings are further developed, they will be of significant clinical utility in the design of treatment regimens for individual BC patients.
Collapse
Affiliation(s)
- María del Pilar Chantada-Vázquez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Mercedes Conde-Amboage
- Models of Optimization Decision, Statistics and Applications Research Group (MODESTYA), Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- CITMAga, 15782 Santiago de Compostela, Spain
| | - Lucía Graña-López
- Breast Pathology Group, Lucus Augusti University Hospital (HULA)-IDIS, Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Radiology Department, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: (S.B.B.); (C.N.)
| | - Cristina Núñez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence: (S.B.B.); (C.N.)
| |
Collapse
|
7
|
Deciphering Biomarkers for Leptomeningeal Metastasis in Malignant Hemopathies (Lymphoma/Leukemia) Patients by Comprehensive Multipronged Proteomics Characterization of Cerebrospinal Fluid. Cancers (Basel) 2022; 14:cancers14020449. [PMID: 35053611 PMCID: PMC8773653 DOI: 10.3390/cancers14020449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The early diagnosis of leptomeningeal disease is a challenge because it is asymptomatic in the early stages. Consequently, it is important to identify a panel of biomarkers to help in its diagnosis and/or prognosis. For this purpose, we explored a multipronged proteomics approach in cerebrospinal fluid (CSF) to determine a potential panel of biomarkers. Thus, a systematic and exhaustive characterization of more than 300 CSF samples was performed by an integrated approach by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and functional proteomics analysis to establish protein profiles, which were useful for developing a panel of biomarkers validated by in silico approaches. Abstract In the present work, leptomeningeal disease, a very destructive form of systemic cancer, was characterized from several proteomics points of view. This pathology involves the invasion of the leptomeninges by malignant tumor cells. The tumor spreads to the central nervous system through the cerebrospinal fluid (CSF) and has a very grim prognosis; the average life expectancy of patients who suffer it does not exceed 3 months. The early diagnosis of leptomeningeal disease is a challenge because, in most of the cases, it is an asymptomatic pathology. When the symptoms are clear, the disease is already in the very advanced stages and life expectancy is low. Consequently, there is a pressing need to determine useful CSF proteins to help in the diagnosis and/or prognosis of this disease. For this purpose, a systematic and exhaustive proteomics characterization of CSF by multipronged proteomics approaches was performed to determine different protein profiles as potential biomarkers. Proteins such as PTPRC, SERPINC1, sCD44, sCD14, ANPEP, SPP1, FCGR1A, C9, sCD19, and sCD34, among others, and their functional analysis, reveals that most of them are linked to the pathology and are not detected on normal CSF. Finally, a panel of biomarkers was verified by a prediction model for leptomeningeal disease, showing new insights into the research for potential biomarkers that are easy to translate into the clinic for the diagnosis of this devastating disease.
Collapse
|
8
|
Development of an antibody-free ID-LC MS method for the quantification of procalcitonin in human serum at sub-microgram per liter level using a peptide-based calibration. Anal Bioanal Chem 2021; 413:4707-4725. [PMID: 33987701 DOI: 10.1007/s00216-021-03361-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
The quantification of low abundant proteins in complex matrices by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains challenging. A measurement procedure based on optimized antibody-free sample preparation and isotope dilution coupled to LC-MS/MS was developed to quantify procalcitonin (PCT) in human serum at sub-microgram per liter level. A combination of sodium deoxycholate-assisted protein precipitation with acetonitrile, solid-phase extraction, and trypsin digestion assisted with Tween-20 enhanced the method sensitivity. Linearity was established through peptide-based calibration curves in the serum matrix (0.092-5.222 μg/L of PCT) with a good linear fit (R2 ≥ 0.999). Quality control materials spiked with known amounts of protein-based standards were used to evaluate the method's accuracy. The bias ranged from -2.6 to +4.3%, and the intra-day and inter-day coefficients of variations (CVs) were below 2.2% for peptide-based quality controls. A well-characterized correction factor was determined and applied to compensate for digestion incompleteness and material loss before the internal standards spike. Results with metrological traceability to the SI units were established using standard peptide of well-characterized purity determined by peptide impurity corrected amino acid analysis. The validated method enables accurate quantification of PCT in human serum at a limit of quantification down to 0.245 μg/L (bias -1.9%, precision 9.1%). The method was successfully applied to serum samples obtained from patients with sepsis. Interestingly, the PCT concentration reported implementing the isotope dilution LC-MS/MS method was twofold lower than the concentration provided by an immunoassay.
Collapse
|
9
|
Pan T, Zhou T, Tu Y, Yan J. Turn-on fluorescence measurement of acid phosphatase activity through an aggregation-induced emission of thiolate-protected gold nanoclusters. Talanta 2021; 227:122197. [DOI: 10.1016/j.talanta.2021.122197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
|
10
|
Development of a Pass-through SPE Cartridge for the Rapid Determination of Fipronil and Its Metabolites in Chicken Eggs by LC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01902-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Chantada-Vázquez MDP, García Vence M, Serna A, Núñez C, Bravo SB. SWATH-MS Protocols in Human Diseases. Methods Mol Biol 2021; 2259:105-141. [PMID: 33687711 DOI: 10.1007/978-1-0716-1178-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identification of molecular biomarkers for human diseases is one of the most important disciplines in translational science as it helps to elucidate their origin and early progression. Thus, it is a key factor in better diagnosis, prognosis, and treatment. Proteomics can help to solve the problem of sample complexity when the most common primary sample specimens were analyzed: organic fluids of easy access. The latest developments in high-throughput and label-free quantitative proteomics (SWATH-MS), together with more advanced liquid chromatography, have enabled the analysis of large sample sets with the sensitivity and depth needed to succeed in this task. In this chapter, we show different sample processing methods (major protein depletion, digestion, etc.) and a micro LC-SWATH-MS protocol to identify/quantify several proteins in different types of samples (serum/plasma, saliva, urine, tears).
Collapse
Affiliation(s)
| | - María García Vence
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | | | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), Lugo, Spain.
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Identification of a Profile of Neutrophil-Derived Granule Proteins in the Surface of Gold Nanoparticles after Their Interaction with Human Breast Cancer Sera. NANOMATERIALS 2020; 10:nano10061223. [PMID: 32586001 PMCID: PMC7353125 DOI: 10.3390/nano10061223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
It is well known that the interaction of a nanomaterial with a biological fluid leads to the formation of a protein corona (PC) surrounding the nanomaterial. Using standard blood analyses, alterations in protein patterns are difficult to detect. PC acts as a “nano-concentrator” of serum proteins with affinity for nanoparticles’ surface. Consequently, characterization of PC could allow detection of otherwise undetectable changes in protein concentration at an early stage of a disease, such as breast cancer (BC). Here, we employed gold nanoparticles (AuNPsdiameter: 10.02 ± 0.91 nm) as an enrichment platform to analyze the human serum proteome of BC patients (n = 42) and healthy controls (n = 42). Importantly, the analysis of the PC formed around AuNPs after their interaction with serum samples of BC patients showed a profile of proteins that could differentiate breast cancer patients from healthy controls. These proteins developed a significant role in the immune and/or innate immune system, some of them being neutrophil-derived granule proteins. The analysis of the PC also revealed serum proteome alterations at the subtype level.
Collapse
|
13
|
Del Pilar Chantada-Vázquez M, López AC, Vence MG, Vázquez-Estévez S, Acea-Nebril B, Calatayud DG, Jardiel T, Bravo SB, Núñez C. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers. J Proteomics 2019; 212:103581. [PMID: 31731051 DOI: 10.1016/j.jprot.2019.103581] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
Nowadays, there are no targeted therapeutic modalities for triple negative breast cancer (TNBC). This disease is associated with poor prognosis and worst clinical outcome because of the aggressive nature of the tumor, delayed diagnosis, and non-specific symptoms in the early stages. Therefore, identification of novel specific TNBC serum biomarkers for screening and therapeutic purposes remains an urgent clinical requirement. New user-friendly and cheap methods for biomarker identification are needed, and nanotechnology offers new opportunities. When dispersed in blood, nanoparticles (NPs) are covered by a protein shell termed "protein corona" (PC). While alterations in protein patterns are challeging to detect by conventional blood analyses, PC acts as a "nano-concentrator" of serum proteins with affinity for NPs' surface. So, the characterization of PC could allow the detection of otherwise undetectable changes in protein concentration at an early stage of the disease or after chemotherapy or surgery. To explore this research idea, serum samples from 8 triple negative breast cancer (TNBC) patients and 8 patients without malignancy were allowed to interact with gold nanoparticles (AuNPs: 10.02 ± 0.91 nm), silver nanoparticles (AgNPs: 9.73 ± 1.70 nm) and magnetic nanoparticles (MNPs: (9.30 ± 0.67 nm). Here, in order to identify biomarker candidates in serum of TNBC patients, these nanomaterials were combined with electrophoretic separation (SDS-PAGE) to performed qualitative and quantitative comparisons of the serum proteomes of TNBC patients (n = 8) and healthy controls (n = 8) by liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis. The results were validated through a sequential window acquisition of all theoretical mass spectra (SWATH) analysis, performed in total serum samples (patients and controls) using this approach as a multiple reaction monitoring (MRM) analysis. SIGNIFICANCE: It is well known that several proteins presented in human serum are important biomarkers for the diagnosis or prognosis of different diseases, as triple negative breast cancer (TNBC). Determining how nanomaterials as gold nanoparticles (AuNPs: 10.02 ± 0.91 nm), silver nanoparticles (AgNPs: 9.73 ± 1.70 nm) and magnetic nanoparticles (MNPs: (9.30 ± 0.67 nm) interact with human serum will assist not only in understanding their effects on the biological system (biocompability and toxicity), but also to obtain information for developing novel nanomaterials with high specificity and selectivity towards proteins with an important biological function (prognostic and diagnostic protein biomarkers).
Collapse
Affiliation(s)
| | - Antonio Castro López
- Breast Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - María García Vence
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Benigno Acea-Nebril
- Department of Surgery, Breast Unit, Complexo Hospitalario Universitario A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | - David G Calatayud
- Department of Electroceramics, Instituto de Cerámica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Cerámica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain.
| |
Collapse
|
14
|
Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 2019; 11:1799-1812. [PMID: 31617391 DOI: 10.4155/bio-2019-0145] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma and serum are widely used for proteomics-based biomarker discovery. However, analysis of these biofluids is highly challenging due to the complexity and wide dynamic range of their proteomes. Notably, highly abundant proteins tend to obscure the detection of potential biomarkers that are usually of lower concentrations. Among the strategies to resolve this problem are: depletion of high-abundance proteins, enrichment of low abundant proteins of interest and prefractionation. In this review, we focus on current and emerging depletion techniques used to enhance the detection and identification of the less abundant proteins in plasma and serum. We discuss the applications and contributions of these methods to proteomics analysis of plasma and serum alongside their limitations and future perspectives.
Collapse
|
15
|
De A, Dutta TK, Ali MA, Behera P, Gali JM. Systematic evaluation of species-independent serum pre-fractionation strategies revealed cost-effective methods to reduce proteome complexity. Anal Biochem 2019; 584:113388. [PMID: 31404526 DOI: 10.1016/j.ab.2019.113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
In this study, the efficiency of one commercial (ProteoMiner™ -PM) and five simple and cost-effective laboratory chemicals (Acetone, TCA/acetone, DTT, ACN and DTT-ACN) based serum protein pre-fractionation strategies was compared in pig model by label-free quantitation based mass spectrometric approach to find out the most suitable strategy for reducing the complexity of serum proteome for subsequent proteomic studies. The highest serum protein depletion percentage and highest depletion of albumin, the most abundant serum protein, was observed in DTT-ACN method. The maximum number of serum proteins was identified in ACN followed by DTT-ACN method and importantly, detection of more number of low-abundant proteins (LAPs) could also be achieved by these two methods. Although PM method resulted into lowest dynamic range of protein abundance, quite a less number of proteins were identified by this method. Overall, sequential depletion using DTT-ACN and ACN methods provided advantage of simultaneous detection of more number of proteins along with LAPs with a reasonably high dynamic range of protein abundances over other methods and thus emerged as cheaper and effective alternatives to the commercial methods. Further, these methods are species-independent and hence can be applied in human and in any livestock species to simplify the serum proteome.
Collapse
Affiliation(s)
- Ankan De
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Tapan Kumar Dutta
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Mohammad Ayub Ali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Parthasarathi Behera
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Jagan Mohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India.
| |
Collapse
|
16
|
Jorge S, Pereira K, López-Fernández H, LaFramboise W, Dhir R, Fernández-Lodeiro J, Lodeiro C, Santos HM, Capelo-Martínez JL. Ultrasonic-assisted extraction and digestion of proteins from solid biopsies followed by peptide sequential extraction hyphenated to MALDI-based profiling holds the promise of distinguishing renal oncocytoma from chromophobe renal cell carcinoma. Talanta 2019; 206:120180. [PMID: 31514886 DOI: 10.1016/j.talanta.2019.120180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
A novel analytical approach is proposed to discriminate between solid biopsies of chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO). The method comprises the following steps: (i) ultrasonic extraction of proteins from solid biopsies, (ii) protein depletion with acetonitrile, (iii) ultrasonic assisted in-solution digestion using magnetic nanoparticle with immobilized trypsin, (iv) C18 tip-based preconcentration of peptides, (v) sequential extraction of the peptides with ACN, (vi) MALDI-snapshot of the extracts and (vii) investigation of the extract containing the most discriminating features using high resolution mass spectrometry. With this approach we have been able to differentially cluster renal oncocytoma and chromophobe renal cell carcinoma and identified 18 proteins specific to chromophobe and seven unique to renal oncocytoma. Chromophobes express proteins associated with ATP function (ATP5I & 5E; VATE1 & G2; ADT2), glycolysis (PGK1) and neuromedin whilst oncocytomas express ATP5H, ATPA, DEPD7 and TRIPB thyroid receptor interacting protein.
Collapse
Affiliation(s)
- Susana Jorge
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Kevin Pereira
- PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Hugo López-Fernández
- ESEI -Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain; CINBIO -Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain; SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312, Vigo, Spain; Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Rúa Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - William LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Javier Fernández-Lodeiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Carlos Lodeiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Hugo M Santos
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Jose L Capelo-Martínez
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal.
| |
Collapse
|
17
|
del Pilar Chantada-Vázquez M, López AC, Bravo SB, Vázquez-Estévez S, Acea-Nebril B, Núñez C. Proteomic analysis of the bio-corona formed on the surface of (Au, Ag, Pt)-nanoparticles in human serum. Colloids Surf B Biointerfaces 2019; 177:141-148. [DOI: 10.1016/j.colsurfb.2019.01.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
|
18
|
Pietrowska M, Wlosowicz A, Gawin M, Widlak P. MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:57-76. [PMID: 31236839 DOI: 10.1007/978-3-030-12298-0_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood serum or plasma proteome is a gold mine of disease biomarkers. However, complexity and a huge dynamic range of their components, combined with multiple mechanisms of degradation and posttranslational modifications, further complicated by the presence of lipids, salts, and other metabolites, represent a real challenge for analytical sensitivity, resolution, and reproducibility. This problem exists particularly in the case of potential disease-specific markers, most typically represented by low-abundant proteins (LAPs), whose detection is usually impaired by the dominance of albumins, immunoglobulins, and other high-abundant serum/plasma proteins (HAPs). Hence, analysis of biomarker candidates in serum/plasma samples frequently requires separation of their components, usually including depletion of albumin in a fraction of interest. Such "preprocessing" of serum/plasma specimens is critical in proteomic analysis based on mass spectrometry. This approach is very potent; nevertheless a wide range of protein concentrations in serum/plasma represents a particular challenge, since high-abundant proteins (mostly albumin) dominate in a sample subjected to mass spectrometry and suppress peptide ions originating from low-abundant proteins, thus limiting probability and reliability of their detection. An emerging approach in serum-/plasma-based biomarker-oriented studies is the proteome component of exosomes - nanovesicles secreted by cells and involved in multiple aspects of intercellular communication. However, the presence of albumin, frequent contaminant of exosomes isolated from human serum/plasma, represents a real challenge also in this type of study. A similar problem is encountered in proteomic studies based on exosomes obtained in in vitro experiments where culture media are normally supplemented with fetal bovine serum containing growth factors and hormones. In this case exosomes are frequently contaminated with bovine serum albumin and other bovine serum proteins which should be removed before proteomic analysis of exosome cargo.
Collapse
Affiliation(s)
- Monika Pietrowska
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Agata Wlosowicz
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Marta Gawin
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Piotr Widlak
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
19
|
Prates J, Martins G, López-Fernández H, Lodeiro C, Capelo J, Santos HM. Modulating the protein content of complex proteomes using acetonitrile. Talanta 2018; 182:333-339. [DOI: 10.1016/j.talanta.2018.01.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/31/2023]
|
20
|
López-Fernández H, Araújo JE, Jorge S, Glez-Peña D, Reboiro-Jato M, Santos HM, Fdez-Riverola F, Capelo JL. S2P: A software tool to quickly carry out reproducible biomedical research projects involving 2D-gel and MALDI-TOF MS protein data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 155:1-9. [PMID: 29512488 DOI: 10.1016/j.cmpb.2017.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE 2D-gel electrophoresis is widely used in combination with MALDI-TOF mass spectrometry in order to analyze the proteome of biological samples. For instance, it can be used to discover proteins that are differentially expressed between two groups (e.g. two disease conditions, case vs. control, etc.) thus obtaining a set of potential biomarkers. This procedure requires a great deal of data processing in order to prepare data for analysis or to merge and integrate data from different sources. This kind of work is usually done manually (e.g. copying and pasting data into spreadsheet files), which is highly time consuming and distracts the researcher from other important, core tasks. Moreover, engaging in a repetitive process in a non-automated, handling-based manner is prone to error, thus threatening reliability and reproducibility. The objective of this paper is to present S2P, an open source software to overcome these drawbacks. METHODS S2P is implemented in Java on top of the AIBench framework, and relies on well-established open source libraries to accomplish different tasks. RESULTS S2P is an AIBench based desktop multiplatform application, specifically aimed to process 2D-gel and MALDI-mass spectrometry protein identification-based data in a computer-aided, reproducible manner. Different case studies are presented in order to show the usefulness of S2P. CONCLUSIONS S2P is open source and free to all users at http://www.sing-group.org/s2p. Through its user-friendly GUI interface, S2P dramatically reduces the time that researchers need to invest in order to prepare data for analysis.
Collapse
Affiliation(s)
- Hugo López-Fernández
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004 Ourense, Spain; CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Portugal.
| | - José E Araújo
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Susana Jorge
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Daniel Glez-Peña
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004 Ourense, Spain; CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Miguel Reboiro-Jato
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004 Ourense, Spain; CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Hugo M Santos
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Florentino Fdez-Riverola
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004 Ourense, Spain; CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - José L Capelo
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| |
Collapse
|
21
|
Jorge S, Araújo J, Pimentel-Santos F, Branco JC, Santos HM, Lodeiro C, Capelo J. Unparalleled sample treatment throughput for proteomics workflows relying on ultrasonic energy. Talanta 2018; 178:1067-1076. [DOI: 10.1016/j.talanta.2017.07.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
22
|
Abstract
The discovery of clinically relevant biomarkers using gel-based proteomics has proven extremely challenging, principally because of the large dynamic range of protein abundances in biofluids such as blood and the fact that only a small number of proteins constitute the vast majority of total blood protein mass. Various separation, depletion, enrichment, and quantitative developments coupled with improvements in gel-based protein quantification technologies, specifically difference gel electrophoresis (DIGE), have contributed to significant improvements in the detection and identification of lower abundance proteins. One of these enrichment technologies, Proteominer, will be the focus of this chapter. The Proteominer technology a utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but at the same time suppressing the concentration of high-abundance proteins in subsequent analysis.
Collapse
|
23
|
Araújo JE, López-Fernández H, Diniz MS, Baltazar PM, Pinheiro LC, da Silva FC, Carrascal M, Videira P, Santos HM, Capelo JL. Dithiothreitol-based protein equalization technology to unravel biomarkers for bladder cancer. Talanta 2017; 180:36-46. [PMID: 29332824 DOI: 10.1016/j.talanta.2017.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
This study aimed to assess the benefits of dithiothreitol (DTT)-based sample treatment for protein equalization to assess potential biomarkers for bladder cancer. The proteome of plasma samples of patients with bladder carcinoma, patients with lower urinary tract symptoms (LUTS) and healthy volunteers, was equalized with dithiothreitol (DTT) and compared. The equalized proteomes were interrogated using two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry. Six proteins, namely serum albumin, gelsolin, fibrinogen gamma chain, Ig alpha-1 chain C region, Ig alpha-2 chain C region and haptoglobin, were found dysregulated in at least 70% of bladder cancer patients when compared with a pool of healthy individuals. One protein, serum albumin, was found overexpressed in 70% of the patients when the equalized proteome of the healthy pool was compared with the equalized proteome of the LUTS patients. The pathways modified by the proteins differentially expressed were analyzed using Cytoscape. The method here presented is fast, cheap, of easy application and it matches the analytical minimalism rules as outlined by Halls. Orthogonal validation was done using western-blot. Overall, DTT-based protein equalization is a promising methodology in bladder cancer research.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - H López-Fernández
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; SING Research Group, Escuela Superior de Ingeniería Informática, University of Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain; Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - M S Diniz
- Biotox Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro M Baltazar
- Serviço de Urologia, Centro Hospital de Lisboa Central, Lisboa, Portugal; Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luís Campos Pinheiro
- Serviço de Urologia, Centro Hospital de Lisboa Central, Lisboa, Portugal; Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Fernando Calais da Silva
- Serviço de Urologia, Centro Hospital de Lisboa Central, Lisboa, Portugal; Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mylène Carrascal
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - H M Santos
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - J L Capelo
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal.
| |
Collapse
|
24
|
Cieslarova Z, Lopes FS, do Lago CL, França MC, Colnaghi Simionato AV. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine's metabolites: Potential biomarkers of amyotrophic lateral sclerosis. Talanta 2017; 170:63-68. [PMID: 28501214 DOI: 10.1016/j.talanta.2017.03.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL-1 acetic acid as background electrolyte and 5mmolL-1 acetic acid in 50% methanol/H2O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL-1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS.
Collapse
Affiliation(s)
- Zuzana Cieslarova
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernando Silva Lopes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Cidade Universitaria, 05508-000 São Paulo, SP, Brazil
| | - Claudimir Lucio do Lago
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Cidade Universitaria, 05508-000 São Paulo, SP, Brazil
| | - Marcondes Cavalcante França
- Faculty of Medical Sciences, Department of Neurology, University of Campinas, P.O. Box 6111, 13083-970 Campinas, SP, Brazil
| | - Ana Valéria Colnaghi Simionato
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology in Bioanalytics, Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
25
|
Lehmann S, Brede C, Lescuyer P, Cocho JA, Vialaret J, Bros P, Delatour V, Hirtz C. Clinical mass spectrometry proteomics (cMSP) for medical laboratory: What does the future hold? Clin Chim Acta 2017; 467:51-58. [DOI: 10.1016/j.cca.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
|
26
|
de Jesus JR, da Silva Fernandes R, de Souza Pessôa G, Raimundo IM, Arruda MAZ. Depleting high-abundant and enriching low-abundant proteins in human serum: An evaluation of sample preparation methods using magnetic nanoparticle, chemical depletion and immunoaffinity techniques. Talanta 2017; 170:199-209. [PMID: 28501159 DOI: 10.1016/j.talanta.2017.03.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/16/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
Abstract
The efficiency of three different depletion methods to remove the most abundant proteins, enriching those human serum proteins with low abundance is checked to make more efficient the search and discovery of biomarkers. These methods utilize magnetic nanoparticles (MNPs), chemical reagents (sequential application of dithiothreitol and acetonitrile, DTT/ACN), and commercial apparatus based on immunoaffinity (ProteoMiner, PM). The comparison between methods shows significant removal of abundant protein, remaining in the supernatant at concentrations of 4.6±0.2, 3.6±0.1, and 3.3±0.2µgµL-1 (n=3) for MNPs, DTT/ACN and PM respectively, from a total protein content of 54µgµL-1. Using GeLC-MS/MS analysis, MNPs depletion shows good efficiency in removing high molecular weight proteins (>80kDa). Due to the synergic effect between the reagents DTT and ACN, DTT/ACN-based depletion offers good performance in the depletion of thiol-rich proteins, such as albumin and transferrin (DTT action), as well as of high molecular weight proteins (ACN action). Furthermore, PM equalization confirms its efficiency in concentrating low-abundant proteins, decreasing the dynamic range of protein levels in human serum. Direct comparison between the treatments reveals 72 proteins identified when using MNP depletion (43 of them exclusively by this method), but only 20 proteins using DTT/ACN (seven exclusively by this method). Additionally, after PM treatment 30 proteins were identified, seven exclusively by this method. Thus, MNPs and DTT/ACN depletion can be simple, quick, cheap, and robust alternatives for immunochemistry-based protein depletion, providing a potential strategy in the search for disease biomarkers.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | - Rafael da Silva Fernandes
- Group for Instrumentation and Automation in Analytical Chemistry - GIA Institute of Chemistry, University of Campinas - UNICAMP
| | - Gustavo de Souza Pessôa
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | - Ivo Milton Raimundo
- Group for Instrumentation and Automation in Analytical Chemistry - GIA Institute of Chemistry, University of Campinas - UNICAMP
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil.
| |
Collapse
|
27
|
Liu Z, Fan S, Liu H, Yu J, Qiao R, Zhou M, Yang Y, Zhou J, Xie P. Enhanced Detection of Low-Abundance Human Plasma Proteins by Integrating Polyethylene Glycol Fractionation and Immunoaffinity Depletion. PLoS One 2016; 11:e0166306. [PMID: 27832179 PMCID: PMC5104378 DOI: 10.1371/journal.pone.0166306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/26/2016] [Indexed: 01/27/2023] Open
Abstract
The enormous depth complexity of the human plasma proteome poses a significant challenge for current mass spectrometry-based proteomic technologies in terms of detecting low-level proteins in plasma, which is essential for successful biomarker discovery efforts. Typically, a single-step analytical approach cannot reduce this intrinsic complexity. Current simplex immunodepletion techniques offer limited capacity for detecting low-abundance proteins, and integrated strategies are thus desirable. In this respect, we developed an improved strategy for analyzing the human plasma proteome by integrating polyethylene glycol (PEG) fractionation with immunoaffinity depletion. PEG fractionation of plasma proteins is simple, rapid, efficient, and compatible with a downstream immunodepletion step. Compared with immunodepletion alone, our integrated strategy substantially improved the proteome coverage afforded by PEG fractionation. Coupling this new protocol with liquid chromatography-tandem mass spectrometry, 135 proteins with reported normal concentrations below 100 ng/mL were confidently identified as common low-abundance proteins. A side-by-side comparison indicated that our integrated strategy was increased by average 43.0% in the identification rate of low-abundance proteins, relying on an average 65.8% increase of the corresponding unique peptides. Further investigation demonstrated that this combined strategy could effectively alleviate the signal-suppressive effects of the major high-abundance proteins by affinity depletion, especially with moderate-abundance proteins after incorporating PEG fractionation, thereby greatly enhancing the detection of low-abundance proteins. In sum, the newly developed strategy of incorporating PEG fractionation to immunodepletion methods can potentially aid in the discovery of plasma biomarkers of therapeutic and clinical interest.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Songhua Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Haipeng Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Jia Yu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Rui Qiao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Mi Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Jian Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- * E-mail: (JZ); (PX)
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- * E-mail: (JZ); (PX)
| |
Collapse
|
28
|
Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules 2016; 21:molecules21101333. [PMID: 27740603 PMCID: PMC6273972 DOI: 10.3390/molecules21101333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 12/21/2022] Open
Abstract
The effects of polyphenol-rich foods on the iron status of athletes, as well as the effect of physical training on the hormone hepcidin, implicated in iron metabolism, are not clear. We investigated the influence on iron metabolism of a long-term training intervention of 120 days, measuring the hepcidin concentration in the plasma of 16 elite triathletes, and the effect of the ingestion of 200 mL of either aronia-citrus juice or a placebo drink for 45 days, in a crossover design. The highest plasma hepcidin concentrations were observed at the beginning of the study (116 ± 63 nM) and levels steadily decreased until the end of the intervention (final value 10 ± 7.5 nM). Long-term training might reduce inflammation and, hence, could be responsible for the decrease in hepcidin in triathletes. Polyphenols from aronia-citrus juice did not interfere in iron absorption, as we did not observe significant differences between the intake of the placebo drink or juice with regard to hepcidin levels. Further studies are required to ascertain the time and conditions necessary to restore hepcidin levels, which reflect the iron status of triathletes.
Collapse
|
29
|
A cost-effective method to get insight into the peritoneal dialysate effluent proteome. J Proteomics 2016; 145:207-213. [PMID: 27216641 DOI: 10.1016/j.jprot.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/21/2022]
Abstract
Protein depletion with acetonitrile and protein equalization with dithiothreitol have been assessed with success as proteomics tools for getting insight into the peritoneal dialysate effluent proteome. The methods proposed are cost-effective, fast and easy of handling, and they match the criteria of analytical minimalism: low sample volume and low reagent consumption. Using two-dimensional gel electrophoresis and peptide mass fingerprinting, a total of 72 unique proteins were identified. Acetonitrile depletes de PDE proteome from high-abundance proteins, such as albumin, and enriches the sample in apolipo-like proteins. Dithiothreitol equalizes the PDE proteome by diminishing the levels of albumin and enriching the extract in immunoglobulin-like proteins. The annotation per gene ontology term reveals the same biological paths being affected for patients undergoing peritoneal dialysis, namely that the largest number of proteins lost through peritoneal dialysate are extracellular proteins involved in regulation processes through binding. SIGNIFICANCE Renal failure is a growing problem worldwide, and particularly in Europe where the population is getting older.
Up-to-date there is a focus of interest in peritoneal dialysis (PD), as it provides a better quality of life and autonomy of the patients than other renal replacement therapies such as haemodialysis. However, PD can only be used during a short period of years, as the peritoneum lost its permeability through time. Therefore to make a breakthrough in PD and consequently contribute to better healthcare system it is urgent to find a group of biomarkers of peritoneum degradation.
Here we report on two cost-effective methods for protein depletion in peritoneal dialysate effluent (PDE). The use of ACN and DTT over PDE to deplete high abundant proteins or to equalize the concentration of proteins, respectively, performs well and with similar protein profiles than when the same chemicals are used in human plasma samples.
ACN depletes de PDE proteome from large proteins, such as albumin, and enriches the sample in apolipoproteins.
DTT equalizes the PDE proteome by diminishing the levels of large proteins such as albumin and enriching the extract in immunoglobulins.
Although the number and type of proteins identified are different, the annotation per gene ontology term reveals the same biological paths being affected for patients undergoing peritoneal dialysate. Thus, the largest number of proteins lost through peritoneal dialysate belongs to the group of extracellular proteins involved in regulation processes through binding. As for the searching of biomarkers, DTT seems to be the most promising of the two methods because acts as an equalizer and it allows interrogating more proteins in the same sample.
Collapse
|
30
|
Gianazza E, Miller I, Palazzolo L, Parravicini C, Eberini I. With or without you — Proteomics with or without major plasma/serum proteins. J Proteomics 2016; 140:62-80. [DOI: 10.1016/j.jprot.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/26/2022]
|
31
|
Packialakshmi B, Liyanage R, Lay JO, Okimoto R, Rath NC. Proteomic Changes in the Plasma of Broiler Chickens with Femoral Head Necrosis. Biomark Insights 2016; 11:55-62. [PMID: 27147818 PMCID: PMC4849419 DOI: 10.4137/bmi.s38291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 02/18/2016] [Indexed: 12/25/2022] Open
Abstract
Femoral head necrosis (FHN) is a skeletal problem in broiler chickens, where the proximal femoral head cartilage shows susceptibility to separation from its growth plate. The selected birds with FHN showed higher body weights and reduced plasma cholesterol. The proteomic differences in the plasma of healthy and FHN-affected chickens were explored using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography/electrospray ionization-tandem mass spectrometry (LC-MS/MS) to prospect for protein biomarkers. We isolated two differentially expressed low molecular weight proteins and identified them by MALDI peptide mass fingerprinting as fibrinogen- and fetuin-derived peptides, respectively. These peptides were reduced in birds susceptible to femoral head problems. Quantitation of LC-MS/MS spectra showed elevated levels of gallinacin-9, apolipoprotein A1, and hemoglobin and reduced levels of alpha-1-acid glycoprotein, albumin, and SPINK7 proteins in FHN. These results suggest that the bodyweight and the lipid profiles along with the above proteins can be useful as noninvasive biomarkers of FHN.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; PPPSRU, USDA, Agricultural Research Service, Fayetteville, AR, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Narayan C Rath
- PPPSRU, USDA, Agricultural Research Service, Fayetteville, AR, USA
| |
Collapse
|
32
|
Packialakshmi B, Liyanage R, Lay JO, Makkar SK, Rath NC. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides. PROTEOMICS INSIGHTS 2016; 7:1-9. [PMID: 27053921 PMCID: PMC4818023 DOI: 10.4137/pri.s31609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Sarbjeet K Makkar
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Narayan C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
33
|
Soler L, Miller I, Hummel K, Razzazi-Fazeli E, Jessen F, Escribano D, Niewold T. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27. Electrophoresis 2016; 37:1277-86. [PMID: 26914286 DOI: 10.1002/elps.201500529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 02/14/2016] [Indexed: 01/07/2023]
Abstract
The growth promoting effect of supplementing animal feed with antibiotics like tetracycline has traditionally been attributed to their antibiotic character. However, more evidence has been accumulated on their direct anti-inflammatory effect during the last two decades. Here we used a pig model to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation and lipid metabolism, confirming the anti-inflammatory mechanism of OTC. Interestingly, apart from the classic acute phase reactants also down regulation was seen of a hibernation associated plasma protein (HP-27), which is to our knowledge the first description in pigs. Although the exact function in non-hibernators is unclear, down regulation of HP-27 could be consistent with increased appetite, which is possibly linked to the anti-inflammatory action of OTC. Given that pigs are good models for human medicine due to their genetic and physiologic resemblance, the present results might also be used for rational intervention in human diseases in which inflammation plays an important role such as obesity, type 2 diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Soler
- Livestock-Nutrition-Quality Division, Department of Biosystems, Faculty of Biosciences Engineering, KU Leuven, Heverlee, Belgium
| | - Ingrid Miller
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | | | - Flemming Jessen
- Division of Industrial Food Research, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Damian Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Theo Niewold
- Livestock-Nutrition-Quality Division, Department of Biosystems, Faculty of Biosciences Engineering, KU Leuven, Heverlee, Belgium
| |
Collapse
|
34
|
Classifying patients in peritoneal dialysis by mass spectrometry-based profiling. Talanta 2016; 152:364-70. [PMID: 26992532 DOI: 10.1016/j.talanta.2016.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
Abstract
Protein equalization with dithiothreitol, protein depletion with acetonitrile and the entire proteome were assessed in conjunction with matrix assisted laser desorption ionization time of flight mass spectrometry-based profiling for a fast and effective classification of patients with renal insufficiency. Two case groups were recruited as proof of concept, patients with chronic glomerulonephritis and diabetic nephropathy. Two key tools were used to develop this approach: protein concentration with centrifugal concentrator tubes with 10 KDa cut-off membranes and chemical assisted protein equalization with dithiothreitol or chemical assisted protein depletion with acetonitrile. In-house developed software was used to apply principal component analysis and hierarchical clustering to the profiles obtained. The results suggest that chemical assisted protein equalization with dithiothreitol is a methodology more robust than the other two ones, as the patients were well grouped by principal component analysis or by hierarchical clustering.
Collapse
|
35
|
Abstract
Antibody-free approaches for quantitative LC–MS/MS-based protein bioanalysis are reviewed and critically evaluated, and compared with the more widely used immunoaffinity-based approaches. Antibody-free workflows will be divided into four groups and discussed in the following order: direct analysis of signature peptides after proteolytic digestion; enrichment of target proteins and signature peptides by fractionated protein precipitation; enrichment of target proteins and signature peptides by reversed-phase and ion-exchange solid-phase extraction; and enrichment of target proteins and signature peptides by (antibody-free) affinity-solid-phase extraction.
Collapse
|
36
|
Sapan CV, Lundblad RL. Review of methods for determination of total protein and peptide concentration in biological samples. Proteomics Clin Appl 2015; 9:268-76. [DOI: 10.1002/prca.201400088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/08/2015] [Accepted: 01/27/2015] [Indexed: 11/06/2022]
|
37
|
Packialakshmi B, Liyanage R, Lay J, Okimoto R, Rath N. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens. Biomark Insights 2015; 10:1-8. [PMID: 25635167 PMCID: PMC4295844 DOI: 10.4137/bmi.s20268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/05/2022] Open
Abstract
UNLABELLED Femoral head separation (FHS) is an idiopathic bone problem that causes lameness and production losses in commercial poultry. In a model of prednisolone-induced susceptibility to FHS, the changes in plasma proteins and peptides were analyzed to find possible biomarkers. Plasma samples from control and FHS-susceptible birds were depleted of their high abundance proteins by acetonitrile precipitation and were then subjected to cation exchange and reverse-phase (RP) fractionations. Analysis with matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) showed several differentially expressed peptides, two of which were isolated by RP-HPLC and identified as the fragments of apolipoprotein A-I. The acetonitrile fractionated plasma proteins were subjected to reduction/alkylation and trypsin digestion followed by liquid chromatography and tandem mass spectrometry, which showed the absence of protocadherin 15, vascular endothelial growth factor-C, and certain transcription and ubiquitin-mediated proteolytic factors in FHS-prone birds. It appears that prednisolone-induced dyslipidemia, vascular, and tissue adhesion problems may be consequential to FHS. Validity of these biomarkers in our model and the natural disease must be verified in future using traditional approaches. BIOMARKER INSIGHTS Lameness because of femoral head separation (FHS) is a production and welfare problem in the poultry industry. Selection against FHS requires identification of the birds with subclinical disease with biomarkers from a source such as blood. Prednisolone can induce femoral head problems and predisposition to FHS. Using this experimental model, we analyzed the plasma peptides and proteins from normal and FHS-prone chickens by mass spectrometry to identify differentially expressed peptides and proteins. We found two peptides, both derived from apolipoprotein A-I, quantitatively elevated and two proteins, protocadherin 15 and VEGF-C, that were conspicuously absent in FHS-susceptible birds.
Collapse
Affiliation(s)
- B Packialakshmi
- Cell & Molecular Biology Program and Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| | - R Liyanage
- State wide Mass Spectrometry Facility, University of Arkansas, Fayetteville, AR, USA
| | - Jo Lay
- State wide Mass Spectrometry Facility, University of Arkansas, Fayetteville, AR, USA
| | - R Okimoto
- Cobb-Vantress Inc., Siloam Springs, AR, USA
| | - Nc Rath
- USDA, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
38
|
Larssen E, Brede C, Hjelle AB, Øysaed KB, Tjensvoll AB, Omdal R, Ruoff P. A rapid method for preparation of the cerebrospinal fluid proteome. Proteomics 2014; 15:10-5. [DOI: 10.1002/pmic.201400096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/18/2014] [Accepted: 10/06/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Eivind Larssen
- Research Department; Stavanger University Hospital; Stavanger Norway
- International Research Institute of Stavanger, IRIS Envrionment; Stavanger Norway
| | - Cato Brede
- Department of Medical Biochemistry; Stavanger University Hospital; Stavanger Norway
| | | | - Kjell Birger Øysaed
- International Research Institute of Stavanger, IRIS Envrionment; Stavanger Norway
| | | | - Roald Omdal
- Clinical Immunology Unit; Department of Internal Medicine; Stavanger University Hospital; Stavanger Norway
- Department of Medical Science; Faculty of Medicine and Dentistry; University of Bergen; Bergen Norway
| | - Peter Ruoff
- Center for Organelle Research (CORE); University of Stavanger; Stavanger Norway
| |
Collapse
|
39
|
Fernández-Costa C, Reboiro-Jato M, Fdez-Riverola F, Ruiz-Romero C, Blanco FJ, Capelo-Martínez JL. Sequential depletion coupled to C18 sequential extraction as a rapid tool for human serum multiple profiling. Talanta 2014; 125:189-95. [DOI: 10.1016/j.talanta.2014.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 01/01/2023]
|
40
|
Oliveira E, Araújo JE, Gómez-Meire S, Lodeiro C, Perez-Melon C, Iglesias-Lamas E, Otero-Glez A, Capelo JL, Santos HM. Proteomics analysis of the peritoneal dialysate effluent reveals the presence of calcium-regulation proteins and acute inflammatory response. Clin Proteomics 2014; 11:17. [PMID: 24742231 PMCID: PMC4022211 DOI: 10.1186/1559-0275-11-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/03/2014] [Indexed: 12/12/2022] Open
Abstract
Background Peritoneal dialysis (PD) is a form of renal replacement used for advanced chronic kidney disease. PD effluent holds a great potential for biomarker discovery for diagnosis and prognosis. In this study a novel approach to unravelling the proteome of PD effluent based-on dithiothreitol depletion followed by 2D-SDS-PAGE and protein identification using tandem mass spectrometry is proposed. Results A total of 49 spots were analysed revealing 25 proteins differentially expressed, among them many proteins involved in calcium regulation. Conclusions Remarkably, a group of proteins dealing with calcium metabolism and calcium regulation has been found to be lost through peritoneal dialysate effluent, giving thus a potential explanation to the calcification of soft tissues in patients subjected to peritoneal dialysis and kidney injury. Comparison of literature dealing with PD is difficult due to differences in sample treatment and analytical methodologies.
Collapse
Affiliation(s)
- Elisabete Oliveira
- BIOSCOPE Research Group. REQUIMTE, Departamento de Química. Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal ; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, 2825-182, Portugal
| | - José E Araújo
- BIOSCOPE Research Group. REQUIMTE, Departamento de Química. Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal ; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, 2825-182, Portugal
| | - Silvana Gómez-Meire
- SING Group. Informatics Department. Higher Technical School of Computer Engineering, University of Vigo, Ourense, Spain
| | - Carlos Lodeiro
- BIOSCOPE Research Group. REQUIMTE, Departamento de Química. Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal ; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, 2825-182, Portugal
| | - Cristina Perez-Melon
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, 32004, España
| | - Elena Iglesias-Lamas
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, 32004, España
| | - Alfonso Otero-Glez
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, 32004, España
| | - José L Capelo
- BIOSCOPE Research Group. REQUIMTE, Departamento de Química. Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal ; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, 2825-182, Portugal
| | - Hugo M Santos
- BIOSCOPE Research Group. REQUIMTE, Departamento de Química. Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal ; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, 2825-182, Portugal
| |
Collapse
|
41
|
Lichtenauer AM, Herzog R, Tarantino S, Aufricht C, Kratochwill K. Equalizer technology followed by DIGE-based proteomics for detection of cellular proteins in artificial peritoneal dialysis effluents. Electrophoresis 2014; 35:1387-94. [DOI: 10.1002/elps.201300499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/17/2014] [Accepted: 02/21/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Anton Michael Lichtenauer
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
- Zytoprotec GmbH; Vienna Austria
| | - Rebecca Herzog
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
- Zytoprotec GmbH; Vienna Austria
| | - Silvia Tarantino
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
| | - Christoph Aufricht
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
| | - Klaus Kratochwill
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Austria
- Zytoprotec GmbH; Vienna Austria
| |
Collapse
|
42
|
Nunes-Miranda JD, Núñez C, Santos HM, Vale G, Reboiro-Jato M, Fdez-Riverola F, Lodeiro C, Miró M, Capelo JL. A mesofluidic platform integrating on-chip probe ultrasonication for multiple sample pretreatment involving denaturation, reduction, and digestion in protein identification assays by mass spectrometry. Analyst 2014; 139:992-5. [DOI: 10.1039/c3an02178e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mesofluidic platform integrating on-chip probe ultrasonication for automated high-throughput shotgun proteomic assays.
Collapse
Affiliation(s)
- J. D. Nunes-Miranda
- Department of Genetics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
| | - Cristina Núñez
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Hugo M. Santos
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- REQUIMTE
| | - G. Vale
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Miguel Reboiro-Jato
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Florentino Fdez-Riverola
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Carlos Lodeiro
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Manuel Miró
- FI-TRACE Group
- Department of Chemistry
- University of the Balearic Islands
- Palma de Mallorca, Spain
| | - J. L. Capelo
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| |
Collapse
|
43
|
Merl J, Deeg CA, Swadzba ME, Ueffing M, Hauck SM. Identification of autoantigens in body fluids by combining pull-downs and organic precipitations of intact immune complexes with quantitative label-free mass spectrometry. J Proteome Res 2013; 12:5656-65. [PMID: 24059262 DOI: 10.1021/pr4005986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most autoimmune diseases are multifactorial diseases and are caused by the immunological reaction against a number of autoantigens. Key for understanding autoimmune pathologies is the knowledge of the targeted autoantigens, both initially and during disease progression. We present an approach for autoantigen identification based on isolation of intact autoantibody-antigen complexes from body fluids. After organic precipitation of high molecular weight proteins and free immunoglobulins, released autoantigens were identified by quantitative label-free liquid chromatography mass spectrometry. We confirmed feasibility of target enrichment and identification from highly complex body fluid proteomes by spiking of a predefined antibody-antigen complex at low level of abundance. As a proof of principle, we studied the blinding disease autoimmune uveitis, which is caused by autoreactive T-cells attacking the inner eye and is accompanied by autoantibodies. We identified three novel autoantigens in the spontaneous animal model equine recurrent uveitis (secreted acidic phosphoprotein osteopontin, extracellular matrix protein 1, and metalloproteinase inhibitor 2) and confirmed the presence of the corresponding autoantibodies in 15-25% of patient samples by enzyme-linked immunosorbent assay. Thus, this workflow led to the identification of novel autoantigens in autoimmune uveitis and may provide a versatile and useful tool to identify autoantigens in other autoimmune diseases in the future.
Collapse
Affiliation(s)
- Juliane Merl
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH) , D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Enjalbert Q, Girod M, Jeudy J, Biarc J, Simon R, Antoine R, Dugourd P, Lemoine J, Salvador A. Combined collision-induced dissociation and photo-selected reaction monitoring mass spectrometry modes for simultaneous analysis of coagulation factors and estrogens. J Pharm Anal 2013; 4:183-189. [PMID: 29403881 PMCID: PMC5761116 DOI: 10.1016/j.jpha.2013.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022] Open
Abstract
Oral estrogens are directly associated with changes in plasma levels of coagulation proteins. Thus, the detection of any variation in protein concentrations due to estrogen contraceptives, by a simultaneous analysis of both coagulation proteins and estrogens, would be a very informative tool. In the present study, the merit of photo-selected reaction monitoring (SRM), a new analytical tool, was evaluated towards estrogens detection in plasma. Then, SRM and photo-SRM detection modes were combined for the simultaneous analysis of estrogen molecules together with heparin co-factor and factor XIIa, two proteins involved in the coagulation cascade. This study shows that photo-SRM could open new multiplexed analytical routes.
Collapse
Affiliation(s)
- Quentin Enjalbert
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut Lumière Matière, UMR5306, France
- Institut des Sciences Analytiques, UMR 5280, France
| | - Marion Girod
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut des Sciences Analytiques, UMR 5280, France
| | - Jérémy Jeudy
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut des Sciences Analytiques, UMR 5280, France
| | - Jordane Biarc
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut des Sciences Analytiques, UMR 5280, France
| | - Romain Simon
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut des Sciences Analytiques, UMR 5280, France
| | - Rodolphe Antoine
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut Lumière Matière, UMR5306, France
| | - Philippe Dugourd
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut Lumière Matière, UMR5306, France
| | - Jérôme Lemoine
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut des Sciences Analytiques, UMR 5280, France
| | - Arnaud Salvador
- Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
- Institut des Sciences Analytiques, UMR 5280, France
- Corresponding author at: Institut des Sciences Analytiques, UMR 5280, France. Tel.: +33 4 37 42 35 49; fax: +33 4 37 42 37 00.
| |
Collapse
|
45
|
López-Cortés R, Oliveira E, Núñez C, Lodeiro C, Páez de la Cadena M, Fdez-Riverola F, López-Fernández H, Reboiro-Jato M, Glez-Peña D, Luis Capelo J, Santos HM. Fast human serum profiling through chemical depletion coupled to gold-nanoparticle-assisted protein separation. Talanta 2012; 100:239-45. [DOI: 10.1016/j.talanta.2012.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 01/23/2023]
|
46
|
Fernández-Costa C, Calamia V, Fernández-Puente P, Capelo-Martínez JL, Ruiz-Romero C, Blanco FJ. Sequential depletion of human serum for the search of osteoarthritis biomarkers. Proteome Sci 2012; 10:55. [PMID: 22971006 PMCID: PMC3515479 DOI: 10.1186/1477-5956-10-55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/06/2012] [Indexed: 12/20/2022] Open
Abstract
Background The field of biomarker discovery, development and application has been the subject of intense interest and activity, especially with the recent emergence of new technologies, such as proteomics-based approaches. In proteomics, search for biomarkers in biological fluids such as human serum is a challenging issue, mainly due to the high dynamic range of proteins present in these types of samples. Methods for reducing the content of most highly abundant proteins have been developed, including immunodepletion or protein equalization. In this work, we report for the first time the combination of a chemical sequential depletion method based in two protein precipitations with acetonitrile and DTT, with a subsequent two-dimensional difference in-gel electrophoresis (2D-DIGE) analysis for the search of osteoarthritis (OA) biomarkers in human serum. The depletion method proposed is non-expensive, of easy implementation and allows fast sample throughput. Results Following this workflow, we have compared sample pools of human serum obtained from 20 OA patients and 20 healthy controls. The DIGE study led to the identification of 16 protein forms (corresponding to 14 different proteins) that were significantly (p < 0.05) altered in OA when compared to controls (8 increased and 7 decreased). Immunoblot analyses confirmed for the first time the increase of an isoform of Haptoglobin beta chain (HPT) in sera from OA patients. Conclusions Altogether, these data demonstrate the utility of the proposed chemical sequential depletion for the analysis of sera in protein biomarker discovery approaches, exhibit the usefulness of quantitative 2D gel-based strategies for the characterization of disease-specific patterns of protein modifications, and also provide a list of OA biomarker candidates for validation.
Collapse
Affiliation(s)
- Carolina Fernández-Costa
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC - Hospital Universitario de A Coruña, 15006, A Coruña, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Santos H, Rodriguez-Suarez E, Lodeiro C, Arruda M, Ramos C, Capelo J. Proteomics: The clinical link. J Proteomics 2012; 75:2753-7. [DOI: 10.1016/j.jprot.2012.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|