1
|
Erlandsson L, Masoumi Z, Hansson LR, Hansson SR. The roles of free iron, heme, haemoglobin, and the scavenger proteins haemopexin and alpha-1-microglobulin in preeclampsia and fetal growth restriction. J Intern Med 2021; 290:952-968. [PMID: 34146434 DOI: 10.1111/joim.13349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a complex pregnancy syndrome characterised by maternal hypertension and organ damage after 20 weeks of gestation and is associated with an increased risk of cardiovascular disease later in life. Extracellular haemoglobin (Hb) and its metabolites heme and iron are highly toxic molecules and several defence mechanisms have evolved to protect the tissue. OBJECTIVES We will discuss the roles of free iron, heme, Hb, and the scavenger proteins haemopexin and alpha-1-microglobulin in pregnancies complicated by PE and fetal growth restriction (FGR). CONCLUSION In PE, oxidative stress causes syncytiotrophoblast (STB) stress and increased shedding of placental STB-derived extracellular vesicles (STBEV). The level in maternal circulation correlates with the severity of hypertension and supports the involvement of STBEVs in causing maternal symptoms in PE. In PE and FGR, iron homeostasis is changed, and iron levels significantly correlate with the severity of the disease. The normal increase in plasma volume taking place during pregnancy is less for PE and FGR and therefore have a different impact on, for example, iron concentration, compared to normal pregnancy. Excess iron promotes ferroptosis is suggested to play a role in trophoblast stress and lipotoxicity. Non-erythroid α-globin regulates vasodilation through the endothelial nitric oxide synthase pathway, and hypoxia-induced α-globin expression in STBs in PE placentas is suggested to contribute to hypertension in PE. Underlying placental pathology in PE with and without FGR might be amplified by iron and heme overload causing oxidative stress and ferroptosis. As the placenta becomes stressed, the release of STBEVs increases and affects the maternal vasculature.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lucas R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Obstetrics and Gynecology, Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
2
|
Brook A, Hoaksey A, Gurung R, Yoong EEC, Sneyd R, Baynes GC, Bischof H, Jones S, Higgins LE, Jones C, Greenwood SL, Jones RL, Gram M, Lang I, Desoye G, Myers J, Schneider H, Hansson SR, Crocker IP, Brownbill P. Cell free hemoglobin in the fetoplacental circulation: a novel cause of fetal growth restriction? FASEB J 2018; 32:5436-5446. [PMID: 29723064 DOI: 10.1096/fj.201800264r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Cell free hemoglobin impairs vascular function and blood flow in adult cardiovascular disease. In this study, we investigated the hypothesis that free fetal hemoglobin (fHbF) compromises vascular integrity and function in the fetoplacental circulation, contributing to the increased vascular resistance associated with fetal growth restriction (FGR). Women with normal and FGR pregnancies were recruited and their placentas collected freshly postpartum. FGR fetal capillaries showed evidence of erythrocyte vascular packing and extravasation. Fetal cord blood fHbF levels were higher in FGR than in normal pregnancies ( P < 0.05) and the elevation of fHbF in relation to heme oxygenase-1 suggests a failure of expected catabolic compensation, which occurs in adults. During ex vivo placental perfusion, pathophysiological fHbF concentrations significantly increased fetal-side microcirculatory resistance ( P < 0.05). fHbF sequestered NO in acute and chronic exposure models ( P < 0.001), and fHbF-primed placental endothelial cells developed a proinflammatory phenotype, demonstrated by activation of NF-κB pathway, generation of IL-1α and TNF-α (both P < 0.05), uncontrolled angiogenesis, and disruption of endothelial cell flow alignment. Elevated fHbF contributes to increased fetoplacental vascular resistance and impaired endothelial protection. This unrecognized mechanism for fetal compromise offers a novel insight into FGR as well as a potential explanation for associated poor fetal outcomes such as fetal demise and stillbirth.-Brook, A., Hoaksey, A., Gurung, R., Yoong, E. E. C., Sneyd, R., Baynes, G. C., Bischof, H., Jones, S., Higgins, L. E., Jones, C., Greenwood, S. L., Jones, R. L., Gram, M., Lang, I., Desoye, G., Myers, J., Schneider, H., Hansson, S. R., Crocker, I. P., Brownbill, P. Cell free hemoglobin in the fetoplacental circulation: a novel cause of fetal growth restriction?
Collapse
Affiliation(s)
- Adam Brook
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Annie Hoaksey
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rekha Gurung
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Edward E C Yoong
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rosanna Sneyd
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia C Baynes
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helen Bischof
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sarah Jones
- School of Healthcare Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Lucy E Higgins
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Carolyn Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Magnus Gram
- Division of Infection Medicine, Lund University, Lund, Sweden
| | - Ingrid Lang
- Institute of Histology and Embryology, University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Clinical Obstetrics and Gynecology, University of Graz, Graz, Austria
| | - Jenny Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Bern, Switzerland
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Ian P Crocker
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
3
|
Lee SE, West KP, Cole RN, Schulze KJ, Wu LSF, Yager JD, Groopman J, Christian P. Novel Plasma Proteins in Nepalese School-aged Children are Associated with a Small Head Size at Birth. Sci Rep 2018; 8:6390. [PMID: 29686285 PMCID: PMC5913316 DOI: 10.1038/s41598-018-24640-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
Abstract
Fetal growth restriction increases the risk of poor childhood growth and development and chronic disease in adulthood. Yet, little is known about biological pathways that mediate the long-lasting effects of suboptimal intrauterine growth. We explored the plasma proteome in a cohort of 500 Nepalese children 6–8 years of age to identify plasma proteins associated with multiple anthropometric size indicators at birth. Among 982 proteins analyzed, no proteins differed by birth weight, length, or weight-for-length indicators. However, 25 proteins were differentially abundant in children with a small vs normal head circumference at birth (<−2 vs. ≥−2 z-scores of the WHO growth standards). Angiopoietin-like 6 was 19.4% more abundant and the other 24 proteins were 7–21% less abundant in children with a small vs normal head circumference at birth, adjusted for potential confounders. The less abundant proteins included actins, actin filament organizing proteins (α-actinin, talin, filamin, cofilin, profilin, and vinculin), proteins involved in muscle contraction, and glycolytic enzymes, which were all positively correlated with each other. A novel cluster of childhood plasma proteins involved in angiogenesis and cytoskeleton dynamics was associated with a small head size at birth. The prognostic value of an altered proteomic phenotype remains to be investigated.
Collapse
Affiliation(s)
- Sun Eun Lee
- Center for Human Nutrition, Dept. of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Keith P West
- Center for Human Nutrition, Dept. of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kerry J Schulze
- Center for Human Nutrition, Dept. of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Lee S-F Wu
- Center for Human Nutrition, Dept. of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - James D Yager
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - John Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Parul Christian
- Center for Human Nutrition, Dept. of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Kosteria I, Kanaka-Gantenbein C, Anagnostopoulos AK, Chrousos GP, Tsangaris GT. Pediatric endocrine and metabolic diseases and proteomics. J Proteomics 2018; 188:46-58. [PMID: 29563068 DOI: 10.1016/j.jprot.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
The principles of Predictive, Preventive and Personalized Medicine (PPPM) dictate the need to recognize individual susceptibility to disease in a timely fashion and to offer targeted preventive interventions and treatments. Proteomics is a state-of-the art technology- driven science aiming at expanding our understanding of the pathophysiologic mechanisms that underlie disease, but also at identifying accurate predictive, diagnostic and therapeutic biomarkers, that will eventually promote the implementation of PPPM. In this review, we summarize the wide spectrum of the applications of Mass Spectrometry-based proteomics in the various fields of Pediatric Endocrinology, including Inborn Errors of Metabolism, type 1 diabetes, Adrenal Disease, Metabolic Syndrome and Thyroid disease, ranging from neonatal screening to early recognition of specific at-risk populations for disease manifestations or complications in adult life and to monitoring of disease progression and response to treatment. SIGNIFICANCE Proteomics is a state-of-the art technology- driven science aiming at expanding our understanding of the pathophysiologic mechanisms that underlie disease, but also at identifying accurate predictive, diagnostic and therapeutic biomarkers that will eventually lead to successful, targeted, patient-centric, individualized approach of each patient, as dictated by the principles of Predictive, Preventive and Personalized Medicine. In this review, we summarize the wide spectrum of the applications of Mass Spectrometry-based proteomics in the various fields of Pediatric Endocrinology, including Inborn Errors of Metabolism, type 1 diabetes, Adrenal Disease, Metabolic Syndrome and Thyroid disease, ranging from neonatal screening, accurate diagnosis, early recognition of specific at-risk populations for the prevention of disease manifestation or future complications.
Collapse
Affiliation(s)
- Ioanna Kosteria
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece.
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece.
| | | | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
5
|
Kosteria I, Anagnostopoulos AK, Kanaka-Gantenbein C, Chrousos GP, Tsangaris GT. The Use of Proteomics in Assisted Reproduction. In Vivo 2017; 31:267-283. [PMID: 28438852 PMCID: PMC5461434 DOI: 10.21873/invivo.11056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally.
Collapse
Affiliation(s)
- Ioanna Kosteria
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George T Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Ferrara SD, Cecchetto G, Cecchi R, Favretto D, Grabherr S, Ishikawa T, Kondo T, Montisci M, Pfeiffer H, Bonati MR, Shokry D, Vennemann M, Bajanowski T. Back to the Future - Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences. Int J Legal Med 2017; 131:1085-1101. [PMID: 28444439 DOI: 10.1007/s00414-017-1585-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Part 2 of the review "Back to the Future" is dedicated to the evolutionary role of the bio-medicolegal sciences, reporting the historical profiles, the state of the art, and prospects for future development of the main related techniques and methods of the ancillary disciplines that have risen to the role of "autonomous" sciences, namely, Genetics and Genomics, Toxicology, Radiology, and Imaging, involved in historic synergy in the "post-mortem assessment," together with the mother discipline Legal Medicine, by way of its primary fundament, universally denominated as Forensic Pathology. The evolution of the scientific research and the increased accuracy of the various disciplines will be oriented towards the elaboration of an "algorithm," able to weigh the value of "evidence" placed at the disposal of the "justice system" as real truth and proof.
Collapse
Affiliation(s)
- Santo Davide Ferrara
- Department of Legal and Occupational Medicine, Toxicology and Public Health, University-Hospital of Padova, Padua, Italy.
| | - Giovanni Cecchetto
- Department of Legal and Occupational Medicine, Toxicology and Public Health, University-Hospital of Padova, Padua, Italy
| | - Rossana Cecchi
- Department of Biomedical, Biotechnological and Translational Medicine, University of Parma, Parma, Italy
| | - Donata Favretto
- Department of Legal and Occupational Medicine, Toxicology and Public Health, University-Hospital of Padova, Padua, Italy
| | - Silke Grabherr
- University Center of Legal Medicine Lausanne-Geneva, University of Lausanne, Lausanne, Switzerland
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Massimo Montisci
- Department of Legal and Occupational Medicine, Toxicology and Public Health, University-Hospital of Padova, Padua, Italy
| | - Heidi Pfeiffer
- Institute of Legal Medicine, University-Hospital Münster, Münster, Germany
| | - Maurizio Rippa Bonati
- Department of Cardiac, Thoracic and Vascular Sciences, Section of Medical Humanities, University of Padova, Padua, Italy
| | - Dina Shokry
- Department of Forensic Medicine and Clinical Toxicology, University of Cairo, Cairo, Egypt
| | - Marielle Vennemann
- Institute of Legal Medicine, University-Hospital Münster, Münster, Germany
| | - Thomas Bajanowski
- Institute of Legal Medicine, University-Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Chutipongtanate S, Chatchen S, Svasti J. Plasma prefractionation methods for proteomic analysis and perspectives in clinical applications. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201600135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/24/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital; Mahidol University; Salaya Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine; Mahidol University; Salaya Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry; Chulabhorn Research Institute, Krung Thep Maha Nakhon; Thailand
- Applied Biological Sciences Program; Chulabhorn Graduate Institute; Thailand
| |
Collapse
|
8
|
Renal injury in neonates: use of "omics" for developing precision medicine in neonatology. Pediatr Res 2017; 81:271-276. [PMID: 27723726 DOI: 10.1038/pr.2016.206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
Preterm birth is associated with increased risks of morbidity and mortality along with increased healthcare costs. Advances in medicine have enhanced survival for preterm infants but the overall incidence of major morbidities has changed very little. Abnormal renal development is an important consequence of premature birth. Acute kidney injury (AKI) in the neonatal period is multifactorial and may increase lifetime risk of chronic kidney disease.Traditional biomarkers in newborns suffer from considerable confounders, limiting their use for early identification of AKI. There is a need to develop novel biomarkers that can identify, in real time, the evolution of renal dysfunction in an early diagnostic, monitoring and prognostic fashion. Use of "omics", particularly metabolomics, may provide valuable information regarding functional pathways underlying AKI and prediction of clinical outcomes.The emerging knowledge generated by the application of "omics" (genomics, proteomics, metabolomics) in neonatology provides new insights that can help to identify markers of early diagnosis, disease progression, and identify new therapeutic targets. Additionally, omics will have major implications in the field of personalized healthcare in the future. Here, we will review the current knowledge of different omics technologies in neonatal-perinatal medicine including biomarker discovery, defining as yet unrecognized biologic therapeutic targets, and linking of omics to relevant standard indices and long-term outcomes.
Collapse
|
9
|
Wölter M, Röwer C, Koy C, Rath W, Pecks U, Glocker M. Proteoform profiling of peripheral blood serum proteins from pregnant women provides a molecular IUGR signature. J Proteomics 2016; 149:44-52. [DOI: 10.1016/j.jprot.2016.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
|
10
|
Pogorelova TN, Linde VA, Gunko VO, Selyutina SN. [The imbalance of metal-containing proteins and free metal ions in the amniotic fluid during fetal growth]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:69-72. [PMID: 26973190 DOI: 10.18097/pbmc20166201069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The levels of zinc, copper, iron, and magnesium ions, and some of their binding proteins have been investigated in an amniotic fluid under the fetal growth retardation (FGR). FGR, developed under conditions of placental insufficiency, is characterized by a decrease in the content of zinc, iron, and magnesium ions and by an increase in the copper content in the amniotic fluid in the II and III trimesters of pregnancy. During these trimesters the levels of ceruloplasmin, ferritin, and Ca2+,Mg2+-ATPase were lower in FGR, while the level of zinc-a-2-glycoprotein was higher than during the same periods of normal pregnancy. Changes in the parameters studied in the amniotic fluid were associated with developmental disorders of the newborns. These changes obviously have a pathogenetic importance in the development of FGR, and the levels of metal ions and their ratio in the amniotic fluid can be used as markers of the pre- and postnatal pathology.
Collapse
Affiliation(s)
- T N Pogorelova
- Rostov Scientific-Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, Russia
| | - V A Linde
- Rostov Scientific-Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, Russia
| | - V O Gunko
- Rostov Scientific-Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, Russia
| | - S N Selyutina
- Rostov Scientific-Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, Russia
| |
Collapse
|
11
|
Identification of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers. PLoS Pathog 2016; 12:e1005395. [PMID: 26808779 PMCID: PMC4726449 DOI: 10.1371/journal.ppat.1005395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is the most common cause of congenital infection, and is a major cause of sensorineural hearing loss and neurological disabilities. Evaluating the risk for a CMV infected fetus to develop severe clinical symptoms after birth is crucial to provide appropriate guidance to pregnant women who might have to consider termination of pregnancy or experimental prenatal medical therapies. However, establishing the prognosis before birth remains a challenge. This evaluation is currently based upon fetal imaging and fetal biological parameters, but the positive and negative predictive values of these parameters are not optimal, leaving room for the development of new prognostic factors. Here, we compared the amniotic fluid peptidome between asymptomatic fetuses who were born as asymptomatic neonates and symptomatic fetuses who were either terminated in view of severe cerebral lesions or born as severely symptomatic neonates. This comparison allowed us to identify a 34-peptide classifier in a discovery cohort of 13 symptomatic and 13 asymptomatic neonates. This classifier further yielded 89% sensitivity, 75% specificity and an area under the curve of 0.90 to segregate 9 severely symptomatic from 12 asymptomatic neonates in a validation cohort, showing an overall better performance than that of classical fetal laboratory parameters. Pathway analysis of the 34 peptides underlined the role of viral entry in fetuses with severe brain disease as well as the potential importance of both beta-2-microglobulin and adiponectin to protect the injured fetal brain infected with CMV. The results also suggested the mechanistic implication of the T calcium channel alpha-1G (CACNA1G) protein in the development of seizures in severely CMV infected children. These results open a new field for potential therapeutic options. In conclusion, this study demonstrates that amniotic fluid peptidome analysis can effectively predict the severity of congenital CMV infection. This peptidomic classifier may therefore be used in clinical settings during pregnancy to improve prenatal counseling. CMV is the most common cause of congenital infection, and can result in significant neonatal morbidity and neurological disabilities. The birth prevalence of congenital CMV is estimated at 0.7% worldwide, and 10 to 20% of these neonates develop severe symptoms. In such cases the outcome is generally poor. Therefore, identification of additional prognostic markers is crucial for prenatal counseling in cases with an infected fetus. This may influence the decision of continuing with the pregnancy or requesting its termination, but also the decision of starting experimental antiviral therapy. The pathophysiology of CMV brain injury is not completely understood, and the identification of new biomarkers of CMV infection might also pave the way towards the development of new therapeutic alternatives. Here, we apply a recently developed and modern non-targeted peptidomics approach to amniotic fluid obtained from symptomatic and asymptomatic CMV-infected fetuses/neonates, followed by network analysis of the peptides of interest in the context of fetal infection and in relation with outcome. Our study identified 34 amniotic fluid peptides that form new prognostic biomarkers that could be used in clinical settings to improve prenatal counseling. In addition, this study provides novel mechanistic insight into the pathobiology of CMV congenital disease.
Collapse
|
12
|
Roverso M, Brioschi M, Banfi C, Visentin S, Burlina S, Seraglia R, Traldi P, Lapolla A. A preliminary study on human placental tissue impaired by gestational diabetes: a comparison of gel-based versus gel-free proteomics approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:71-82. [PMID: 27419900 DOI: 10.1255/ejms.1412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gestational diabetes (GDM) is the most common complication of pregnancy and it is associated with maternal and fetal short- and long-term consequences. GDM modifies placental structure and function, but many of the underlying mechanisms are still unclear. The aim of this study is to develop and compare two different methods, based respectively on gel-based and gel-free proteomics, in order to investigate the placental proteome in the absence or in the presence of GDM and to identify, through a comparative approach, possible changes in protein expression due to the GDM condition. Placenta homogenates obtained by pooling six control samples and six samples from GDM pregnant women were analyzed by two-dimensional (2D) electrophoresis coupled with mass spectrometry [nano-liquid chromatography (nano-LC) tandem mass spectrometry (MS/MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)] and by a label-free mass spectrometry method based on LC-MS(E). The gel-based approach highlights 13 over-expressed proteins and 16 under-expressed proteins, while the label-free method shows the over- expression of 10 proteins and the under-expression of nine proteins. As regards 2D gel electrophoresis, a comparison between two different protein identification methods, based respectively on nLC-electrospray ionization-MS/MS and MALDI-MS/MS, was performed taking into consideration the sequence coverage, the MASCOT score and the exponentially modified protein abundance index. The analysis of the complex proteome through an integrated strategy revealed that the quantitative gel-free and label-free MS approach might be suitable to identify candidate markers of GDM.
Collapse
Affiliation(s)
- Marco Roverso
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy. Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Maura Brioschi
- Centro Cardiologico Monzino I.R.C.C.S, Via Parea 4, Milan, Italy.
| | - Cristina Banfi
- Centro Cardiologico Monzino I.R.C.C.S, Via Parea 4, Milan, Italy.
| | - Silvia Visentin
- Department of Woman's and Child's Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | - Silvia Burlina
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | | - Annunziata Lapolla
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
13
|
Ornaghi S, Mueller M, Barnea ER, Paidas MJ. Thrombosis during pregnancy: Risks, prevention, and treatment for mother and fetus-harvesting the power of omic technology, biomarkers and in vitro or in vivo models to facilitate the treatment of thrombosis. ACTA ACUST UNITED AC 2015; 105:209-25. [DOI: 10.1002/bdrc.21103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sara Ornaghi
- Department of Obstetrics and Gynecology; University of Milan-Bicocca; Monza Italy
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine; New Haven Connecticut
| | - Martin Mueller
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine; New Haven Connecticut
- Department of Obstetrics and Gynecology; University Hospital Bern; Bern Switzerland
| | - Eytan R. Barnea
- Society for the Investigation of Early Pregnancy; Cherry Hill New Jersey
- BioIncept LLC; Cherry Hill New Jersey
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine; New Haven Connecticut
| |
Collapse
|
14
|
Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 2015; 46:1605-23. [PMID: 24658999 DOI: 10.1007/s00726-014-1725-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.
Collapse
|
15
|
Polati R, Brandi J, Dalai I, Zamò A, Cecconi D. Tissue proteomics of splenic marginal zone lymphoma. Electrophoresis 2015; 36:1612-21. [PMID: 25873066 DOI: 10.1002/elps.201400329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare chronic B lymphoproliferative disease, whose molecular pathogenesis has still not been well established. For the first time, a proteomic approach was undertaken to analyse the protein profiles of SMZL tissue. 1D and 2D Western blot, immunohistochemical analysis, and functional data mining were also performed in order to validate results, investigate protein species specific regulation, classify proteins, and explore their potential relationships. We demonstrated that SMZL is characterized by modulation of protein species related to energetic metabolism and apoptosis pathways. We also reported specific protein species (such as biliverdin reductase A, manganese superoxide dismutase, beta-2 microglobulin, growth factor receptor-bound protein 2, acidic leucine-rich nuclear phosphoprotein 32 family member A, and Set nuclear oncogene) directly involved in NF-kB and BCR pathways, as well as in chromatin remodelling and cytoskeleton. Our findings shed new light on SMZL pathogenesis and provide a basis for the future development of novel biomarkers. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD001124.
Collapse
Affiliation(s)
- Rita Polati
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Jessica Brandi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Irene Dalai
- Department of Pathology and Diagnostics, Pathological Anatomy, University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Pathology and Diagnostics, Pathological Anatomy, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Abstract
The study of proteomics could explain many aspects of obstetric disorders. We undertook this review with the aim of assessing the utility of proteomics in the specialty of obstetrics. We searched the electronic databases of MEDLINE, EBSCOhost, BVS Bireme, and SciELO, using various search terms with the assistance of a librarian. We considered cohort studies, case-control studies, case series, and systematic review articles published until October 2014 in the English or Spanish language, and evaluated their quality and the internal validity of the evidence provided. Two reviewers extracted the data independently, then both researchers simultaneously revised the data later, to arrive at a consensus. The search retrieved 1,158 papers, of which 965 were excluded for being duplicates, not relevant, or unrelated studies. A further 86 papers were excluded for being guidelines, protocols, or case reports, along with another 64 that did not contain relevant information, leaving 43 studies for inclusion. Many of these studies showed the utility of proteomic techniques for prediction, pathophysiology, diagnosis, management, monitoring, and prognosis of pre-eclampsia, perinatal infection, premature rupture of membranes, preterm birth, intrauterine growth restriction, and ectopic pregnancy. Proteomic techniques have enormous clinical significance and constitute an invaluable weapon in the management of obstetric disorders that increase maternal and perinatal morbidity and mortality.
Collapse
Affiliation(s)
- Jónathan Hernández-Núñez
- Department of Obstetrics and Gynecology, Hospital Alberto Fernández-Valdés, Santa Cruz del Norte, Mayabeque, Cuba
| | - Magel Valdés-Yong
- Department of Obstetrics and Gynecology, Hospital Luis Díaz Soto, Habana del Este, La Habana, Cuba
| |
Collapse
|
17
|
Alterations of protein expression in serum of infants with intrauterine growth restriction and different gestational ages. J Proteomics 2015; 119:169-82. [DOI: 10.1016/j.jprot.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/16/2015] [Indexed: 01/19/2023]
|
18
|
Zhang Y, Kang Y, Zhou Q, Zhou J, Wang H, Jin H, Liu X, Ma D, Li X. Quantitative proteomic analysis of serum from pregnant women carrying a fetus with conotruncal heart defect using isobaric tags for relative and absolute quantitation (iTRAQ) labeling. PLoS One 2014; 9:e111645. [PMID: 25393621 PMCID: PMC4230941 DOI: 10.1371/journal.pone.0111645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
Abstract
Objective To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD) fetus, using proteomic analysis. Methods The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14–18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD) fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS). The differentially expressed proteins identified by iTRAQ were further validated with Western blot. Results A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot. Conclusions The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum.
Collapse
Affiliation(s)
- Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yuan Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jizi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijun Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Hong Jin
- Department of Chemistry, Fudan University, Shanghai, China
- Institute of Biomedicine, Fudan University, Shanghai, China
| | - Xiaohui Liu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XL); (DM)
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- * E-mail: (XL); (DM)
| |
Collapse
|
19
|
Visentin S, Grumolato F, Nardelli GB, Di Camillo B, Grisan E, Cosmi E. Early origins of adult disease: low birth weight and vascular remodeling. Atherosclerosis 2014; 237:391-9. [PMID: 25463063 DOI: 10.1016/j.atherosclerosis.2014.09.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVD) and diabetes still represent the main cause of mortality and morbidity in the industrialized world. Low birth weight (LBW), caused by intrauterine growth restriction (IUGR), was recently known to be associated with increased rates of CVD and non-insulin dependent diabetes in adult life (Barker's hypothesis). Well-established animal models have shown that environmentally induced IUGR (diet, diabetes, hormone exposure, hypoxia) increases the risk of a variety of diseases later in life with similar phenotypic outcomes in target organs. This suggests that a range of disruptions in fetal and postnatal growth may act through common pathways to regulate the developmental programming and produce a similar adult phenotype. The identification of all involved signaling cascades, underlying the physiopathology of these damages in IUGR fetuses, with their influence on adult health, is still far from satisfactory. The endothelium may be important for long-term remodeling and in the control of elastic properties of the arterial wall. Several clinical and experimental studies showed that IUGR fetuses, neonates, children and adolescents present signs of endothelial dysfunction, valuated by aorta intima media thickness, carotid intima media thickness and stiffness, central pulse wave velocity, brachial artery flow-mediated dilation, laser Doppler skin perfusion and by the measure of arterial blood pressure. In utero identification of high risk fetuses and long-term follow-up are necessary to assess the effects of interventions aimed at preventing pregnancy-induced hypertension, reducing maternal obesity, encouraging a healthy life style and preventing childhood obesity on adult blood pressure and cardiovascular disease in later life.
Collapse
Affiliation(s)
- Silvia Visentin
- Department of Woman and Child Health, University of Padua School of Medicine, Padua, Italy
| | - Francesca Grumolato
- Department of Woman and Child Health, University of Padua School of Medicine, Padua, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Enrico Grisan
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Erich Cosmi
- Department of Woman and Child Health, University of Padua School of Medicine, Padua, Italy.
| |
Collapse
|
20
|
Jiang P, Sangild PT. Intestinal proteomics in pig models of necrotising enterocolitis, short bowel syndrome and intrauterine growth restriction. Proteomics Clin Appl 2014; 8:700-14. [PMID: 24634357 DOI: 10.1002/prca.201300097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Necrotising enterocolitis (NEC), short bowel syndrome (SBS) and intrauterine growth restriction (IUGR) are three conditions associated with intestinal dysfunction in newborn infants, particularly those born preterm. Piglet (Sus scrofa) models have recently been developed for NEC, SBS and IUGR, and tissue proteomic analyses have identified unknown pathways and new prognostic disease markers. Intestinal HSPs, iron metabolism proteins and proteins related to amino acid (e.g. arginine) and glucose metabolism are consistently affected by NEC progression and some of these proteins are also affected by SBS and IUGR. Parallel changes in some plasma and urinary proteins (e.g. haptoglobin, globulins, complement proteins, fatty acid binding proteins) may mirror the intestinal responses and pave the way to biomarker discovery. Explorative non-targeted proteomics provides ideas about the cellular pathways involved in intestinal adaptation during the critical neonatal period. Proteomics, combined with other -omic techniques, helps to get a more holistic picture of intestinal adaptation during NEC, SBS and IUGR. Explorative -omic research methods also have limitations and cannot replace, but only supplement, classical hypothesis-driven research that investigate disease mechanisms using a single or few endpoints.
Collapse
Affiliation(s)
- Pingping Jiang
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
21
|
Ferrara SD, Viel G. Functional ‘-omics’ in intrauterine growth restriction: novel insights into child development. Expert Rev Proteomics 2014; 9:355-7. [DOI: 10.1586/epr.12.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Klein J, Buffin-Meyer B, Mullen W, Carty DM, Delles C, Vlahou A, Mischak H, Decramer S, Bascands JL, Schanstra JP. Clinical proteomics in obstetrics and neonatology. Expert Rev Proteomics 2014; 11:75-89. [PMID: 24404900 DOI: 10.1586/14789450.2014.872564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical proteomics has been applied to the identification of biomarkers of obstetric and neonatal disease. We will discuss a number of encouraging studies that have led to potentially valid biomarkers in the context of Down's syndrome, preterm birth, amniotic infections, preeclampsia, intrauterine growth restriction and obstructive uropathies. Obtaining noninvasive biomarkers (e.g., from the maternal circulation, urine or cervicovaginal fluid) may be more feasible for obstetric diseases than for diseases of the fetus, for which invasive methods are required (e.g., amniotic fluid, fetal urine). However, studies providing validated proteomics-identified biomarkers are limited. Efforts should be made to save well-characterized samples of these invasive body fluids so that many valid biomarkers of pregnancy-related diseases will be identified in the coming years using proteomics based analysis upon adoption of 'clinical proteomics guidelines'.
Collapse
Affiliation(s)
- Julie Klein
- Mosaiques diagnostics & therapeutics, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Selective intrauterine growth restriction in monochorionic twin pregnancies: markers of endothelial damage and metabolomic profile. Twin Res Hum Genet 2013; 16:816-26. [PMID: 23701694 DOI: 10.1017/thg.2013.33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this study was to assess the aorta-intima thickness (aIT) and serum metabolomic profile in selective intrauterine growth-restricted (sIUGR) monochorionic diamniotic (MCDA) twin fetuses presenting Doppler velocimetry alterations. Fetal abdominal aIT was measured by ultrasound at 32 weeks of gestation, enrolling 24 MCDA twin fetuses (8 sIUGR and 16 controls). sIUGR twin fetuses were classified into two groups: Group 1 consisted of sIUGR with abnormal umbilical artery (UA) Doppler waveforms and Group 2 included sIUGR with normal UA Doppler. Group 3 were control fetuses appropriate for gestational age (AGA). Fetal blood samples were obtained from the umbilical vein immediately after fetal extraction. A non-targeted metabolomic profiling investigated fetal metabolism alterations by using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Median fetal aIT was significantly larger in Group 1 (median value = 0.9 mm; range = 0.8-1.0 mm; p < .002) and Group 2 (median value = 0.8 mm; range = 0.7-0.8 mm; p < .002) than in AGA Group 3 (median value = 0.5 mm; range = 0.4-0.6 mm; p < .002). Metabolomic analyses, performed on four sIUGR cases (Group 1) compared with four AGA co-twins, showed an upregulation of phenylalanine, sphingosine, glycerophosphocholine, and choline, and a downregulation of valine, tryptophan, isoleucine, and proline sIUGR Group 1 compared with AGA. Although for metabolomics data only a statistical tendency (and not a statistical significance) was reached due to the small sample size, we believe that our results represent a valid starting point for further in-depth metabolomic and proteomic investigations of sIUGR in MCDA fetuses.
Collapse
|
24
|
Hashimoto F, Nishiumi S, Miyake O, Takeichi H, Chitose M, Ohtsubo H, Ishimori S, Ninchoji T, Hashimura Y, Kaito H, Morisada N, Morioka I, Fukuoka H, Yoshida M, Iijima K. Metabolomics analysis of umbilical cord blood clarifies changes in saccharides associated with delivery method. Early Hum Dev 2013. [PMID: 23178109 DOI: 10.1016/j.earlhumdev.2012.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A metabolomic approach using umbilical cord blood from infants at birth has not been studied widely yet. AIM We examined changes in metabolite levels in umbilical cord blood at birth via gas chromatography/mass spectrometry (GC/MS)-based metabolomics, with the aim of achieving a detailed understanding of fetal stress during labor. STUDY DESIGN All procedures were reviewed and approved by the Institutional Review Board of Kobe University School of Medicine. This was a cohort study of pregnant women based in Palmore Hospital, which is located in an urban area of Japan, and was carried out between December 2010 and May 2011. SUBJECT Umbilical cord arterial blood samples were obtained from 41 infants immediately after delivery. OUTCOME MEASURES Metabolites in the blood samples were measured using GC/MS to investigate whether the delivery method (spontaneous onset of labor, induction of labor or elective cesarean section) affected the metabolite profile in umbilical cord blood. RESULTS Elective cesarean section without labor led to lower levels of isoleucine, fructose, mannose, glucose, allose, glucuronic acid, inositol and cysteine in comparison with vaginal delivery following spontaneous labor and without medication. CONCLUSION It is proposed that the stress associated with labor be involved in alterations in the levels of metabolites, particularly saccharides such as glucose, in umbilical cord blood.
Collapse
Affiliation(s)
- Fusako Hashimoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brandi J, Dando I, Palmieri M, Donadelli M, Cecconi D. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists. Electrophoresis 2013; 34:1359-68. [PMID: 23463621 DOI: 10.1002/elps.201200402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 01/06/2023]
Abstract
The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Jessica Brandi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
26
|
Proteomics advancements in fetomaternal medicine. Clin Biochem 2013; 46:487-96. [DOI: 10.1016/j.clinbiochem.2012.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
|
27
|
Ergaz Z, Shoshani-Dror D, Guillemin C, Neeman-azulay M, Fudim L, Weksler-Zangen S, Stodgell CJ, Miller RK, Ornoy A. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model. Toxicol Appl Pharmacol 2012; 265:209-20. [DOI: 10.1016/j.taap.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 12/20/2022]
|
28
|
Wölter M, Röwer C, Koy C, Reimer T, Rath W, Pecks U, Glocker MO. A proteome signature for intrauterine growth restriction derived from multifactorial analysis of mass spectrometry-based cord blood serum profiling. Electrophoresis 2012; 33:1881-93. [DOI: 10.1002/elps.201200001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manja Wölter
- Proteome Center Rostock; Medical Faculty and Natural Science Faculty; University of Rostock; Rostock; Germany
| | - Claudia Röwer
- Proteome Center Rostock; Medical Faculty and Natural Science Faculty; University of Rostock; Rostock; Germany
| | - Cornelia Koy
- Proteome Center Rostock; Medical Faculty and Natural Science Faculty; University of Rostock; Rostock; Germany
| | - Toralf Reimer
- Department of Obstetrics and Gynecology; Medical Faculty; University of Rostock; Clinic Suedstadt; Rostock; Germany
| | - Werner Rath
- Department of Obstetrics and Gynecology; Medical Faculty; RWTH Aachen University; Germany
| | - Ulrich Pecks
- Department of Obstetrics and Gynecology; Medical Faculty; RWTH Aachen University; Germany
| | - Michael O. Glocker
- Proteome Center Rostock; Medical Faculty and Natural Science Faculty; University of Rostock; Rostock; Germany
| |
Collapse
|
29
|
Lin G, Liu C, Feng C, Fan Z, Dai Z, Lai C, Li Z, Wu G, Wang J. Metabolomic analysis reveals differences in umbilical vein plasma metabolites between normal and growth-restricted fetal pigs during late gestation. J Nutr 2012; 142:990-8. [PMID: 22513987 DOI: 10.3945/jn.111.153411] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a major problem for both human health and animal production due to its association with high rates of neonatal morbidity and mortality, low efficiency of food utilization, permanent adverse effects on postnatal growth and development, and long-term health and productivity of the offspring. However, the underlying mechanisms for IUGR are largely unknown. In this study, one IUGR fetus and one normal body weight (NBW) fetus were obtained from each of 9 gilts at each of 2 gestational ages (d 90 and 110). Metabolomes of umbilical vein plasma in IUGR and NBW fetuses were determined by MS, while hormones, amino acids, and related metabolites in maternal and fetal plasma were measured using assay kits and chromatographic methods. Metabolites (including glucose, urea, ammonia, amino acids, and lipids) in umbilical vein plasma exhibited a cluster of differences between IUGR and NBW fetuses on d 90 and 110 of gestation. These changes in the IUGR group are associated with disorders of nutrient and energy metabolism as well as endocrine imbalances, which may contribute to the retardation of fetal growth and development. The findings help provide information regarding potential mechanisms responsible for IUGR in swine and also have important implications for the design of effective strategies to prevent, diagnose, and treat IUGR in other mammalian species, including humans.
Collapse
Affiliation(s)
- Gang Lin
- China AgriculturalUniversity, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|