1
|
Dresler S, Bogucka-Kocka A, Kováčik J, Kubrak T, Strzemski M, Wójciak-Kosior M, Rysiak A, Sowa I. Separation and determination of coumarins including furanocoumarins using micellar electrokinetic capillary chromatography. Talanta 2018; 187:120-124. [PMID: 29853023 DOI: 10.1016/j.talanta.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022]
Abstract
The conditions of micellar electrokinetic capillary chromatography for separation and simultaneous measurement of coumarins (coumarin, scoparone, isoscopoletin, esculin, esculetin, umbelliferone) including furanocoumarins (xanthotoxin, byakangelicin, isopimpinellin, bergapten, phellopterin, xanthotoxol) have been elaborated. The influence of different parameters, such as the pH of the buffer, sodium cholate (SC) or methanol concentration in the buffer, on the migration time, peak resolution, peak asymmetry, and number of theoretical plates was investigated. The optimum separation of the compounds was achieved using 50-µm i.d. capillaries with a total length of 64.5 cm (56 cm effective length) and a buffer system at pH 9.00 consisting of 50 mM sodium tetraborate, 45 mM SC, and 20% of methanol (v/v). The developed method ensured good repeatability of corrected peak areas and migration times (the relative standard deviations were in the range of 2.8-6.1% and 0.8-4.0%, respectively). The average limit of detection for all studied compounds was below 1.3 µg mL. Moreover, good linearity of the relationship between the peak corrected area and the concentration of the compounds was observed (correlation coefficient >0.99). The method was successfully applied in the quantitative analysis of two different types of samples, i.e. Heracleum sphondylium herb and Aesculus hippocastanum cortex.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4a, 20-094 Lublin, Poland
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic
| | - Tomasz Kubrak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalen Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Rysiak
- Department of Ecology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Yen FL, Wang SW, Cheng HL, Chen KL, Chen YL. Determination of Saikosaponins in Bupleuri Radix by Micellar Electrokinetic Chromatography with Experimental Design. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1392548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Hui-Ling Cheng
- Biomedical Technology and Device Research Laboratories, Pharmaceutical Optimization Technology Division, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kuan-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medical, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Analysis of Three Compounds in Flos Farfarae by Capillary Electrophoresis with Large-Volume Sample Stacking. Int J Anal Chem 2017; 2017:3813879. [PMID: 29056967 PMCID: PMC5605867 DOI: 10.1155/2017/3813879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/10/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to develop a method combining an online concentration and high-efficiency capillary electrophoresis separation to analyze and detect three compounds (rutin, hyperoside, and chlorogenic acid) in Flos Farfarae. In order to get good resolution and enrichment, several parameters such as the choice of running buffer, pH and concentration of the running buffer, organic modifier, temperature, and separation voltage were all investigated. The optimized conditions were obtained as follows: the buffer of 40 mM NaH2P04-40 mM Borax-30% v/v methanol (pH 9.0); the sample hydrodynamic injection of up to 4 s at 0.5 psi; 20 kV applied voltage. The diode-array detector was used, and the detection wavelength was 364 nm. Based on peak area, higher levels of selective and sensitive improvements in analysis were observed and about 14-, 26-, and 5-fold enrichment of rutin, hyperoside, and chlorogenic acid were achieved, respectively. This method was successfully applied to determine the three compounds in Flos Farfarae. The linear curve of peak response versus concentration was from 20 to 400 µg/ml, 16.5 to 330 µg/mL, and 25 to 500 µg/mL, respectively. The regression coefficients were 0.9998, 0.9999, and 0.9991, respectively.
Collapse
|
4
|
Liang Q, Chen H, Zhou X, Deng Q, Hu E, Zhao C, Gong X. Optimized microwave-assistant extraction combined ultrasonic pretreatment of flavonoids fromPeriploca forrestiiSchltr. and evaluation of its anti-allergic activity. Electrophoresis 2017; 38:1113-1121. [DOI: 10.1002/elps.201600515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Qian Liang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Enming Hu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| | - Xiaojian Gong
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment; Guizhou Normal University; Guiyang P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine; Guiyang P. R. China
- The Research Center for Quality Control of Natural Medicine; Guizhou Normal University; Guiyang P. R. China
| |
Collapse
|
5
|
D'Orazio G, Asensio-Ramos M, Fanali C, Hernández-Borges J, Fanali S. Capillary electrochromatography in food analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Zhang W, Li Y, Chen Z. Selective and sensitive determination of protoberberines by capillary electrophoresis coupled with molecularly imprinted microextraction. J Sep Sci 2015; 38:3969-3975. [PMID: 26419924 DOI: 10.1002/jssc.201500864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 02/02/2023]
Abstract
In this work, we developed a novel molecularly imprinted solid-phase microextraction with capillary electrophoresis method for the selective extraction and determination of protoberberines in complicated samples. The imprinted monolith was prepared in a micropipette tip-based device by using acrylamide as the functional monomer, ethyleneglyoldimethacrylate as the cross-linker and dimethylsulfoxide as the porogen, and exhibited an imprinting factor of 2.41 to berberine, 2.36 to palmatine and 2.38 to jatrorrhizine. Good capillary electrophoresis separation was achieved by using 20 mM phosphate buffer at pH 7 as running buffer with the addition of organic modifier of 10% methanol. Parameters such as sample pH value, sample flow rate and sample volume were investigated for imprinted monolith-based solid-phase microextraction. An imprinted solid-phase microextraction with capillary electrophoresis method was developed, the method showed a wide linear range (0.3-50 μg/mL), good linearity (R2 ≥ 0.9947) and good reproducibility (relative standard deviations ≤ 0.73%), the limit of detection was as low as 0.1 μg/mL, which was lower than some reported methods based on capillary electrophoresis for protoberberines. The method has been applied for determination of three common protoberberines in Cortex Phellodendri Chinensis, by using a molecularly imprinted monolith as the selective sorbent, most of the matrices in the Cortex Phellodendri Chinensis sample were removed and three protoberberines were selectively enriched and well determined.
Collapse
Affiliation(s)
- Wenpeng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China
| | - Yilin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
|
8
|
Chen Z, Ye Q, Liu L, Dong H. Simultaneous Determination of Five Alkaloid Compounds in a Drug Based on a Hydrophilic Monolithic Column by Capillary Electrochromatography. J Chromatogr Sci 2015; 54:88-95. [PMID: 26187925 DOI: 10.1093/chromsci/bmv096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/13/2022]
Abstract
A novel capillary electrochromatography (CEC) method was developed by using a hydrophilic monolithic column for the simultaneous determination of five alkaloids in a drug. The monolithic stationary phase was first prepared via in situ polymerization of acrylamide (AM), glycidyl methacrylate (GMA), N,N'-methylenebisacrylamide (MBA) and 2-acrylamido-2-methyl-1-propane-sulfonic acid (AMPS) in a ternary porogen solvent system consisting of cyclohexanol, dodecanol and toluene. The obtained monolithic stationary phase was subsequently modified by 0.1 mol/L ammonia water for opening epoxide groups of GMA. The separation performance and efficiency of the resulting monolithic column were investigated by the use of five compounds (thiourea, aniline, naphthylamine, diphenylamine and dimethyl acetamide) by CEC. The optimized monolithic column has obtained high column efficiencies with 74,000-121,000 theoretical plates/m. Finally, the prepared monolithic column was used to separate and determine five alkaloids (piperine, nuciferine, kukoline, berberine and tetrandrine) using CEC. Under the conditions of acetonitrile/10 mM phosphate buffer solution (65/35, v/v, pH 8.5) and 15 kV applied voltage, the baseline separation of five alkaloids was achieved. The proposed method has been successfully applied to the determination of berberine in a tablet sample. The percentage of recovery of spiked tablet samples ranged from 93.4 to 108.0% with relative standard deviations (RSDs) <9.20%.
Collapse
Affiliation(s)
- Zongbao Chen
- Key Laboratory of Applied Organic Chemistry, College of Jiangxi Province, Department of Chemistry, Shangrao Normal University, Shangrao, Jiangxi 334001, PR China Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 335002, PR China
| | - Qing Ye
- Key Laboratory of Applied Organic Chemistry, College of Jiangxi Province, Department of Chemistry, Shangrao Normal University, Shangrao, Jiangxi 334001, PR China
| | - Linghai Liu
- Key Laboratory of Applied Organic Chemistry, College of Jiangxi Province, Department of Chemistry, Shangrao Normal University, Shangrao, Jiangxi 334001, PR China
| | - Hongxia Dong
- Key Laboratory of Applied Organic Chemistry, College of Jiangxi Province, Department of Chemistry, Shangrao Normal University, Shangrao, Jiangxi 334001, PR China
| |
Collapse
|
9
|
Li YY, Di R, Hsu WL, Huang YQ, Sun H, Cheung HY. Sensitivity improvement of kukoamine determination by complexation with dihydrogen phosphate anions in capillary zone electrophoresis. Electrophoresis 2015; 36:1801-7. [DOI: 10.1002/elps.201500030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan-Yuan Li
- Department of Biomedical Sciences, Research Group for Bioactive Products; City University of Hong Kong; Hong Kong SAR, P. R. China
| | - Rui Di
- Department of Biomedical Sciences, Research Group for Bioactive Products; City University of Hong Kong; Hong Kong SAR, P. R. China
| | - Wing-Leung Hsu
- Department of Biomedical Sciences, Research Group for Bioactive Products; City University of Hong Kong; Hong Kong SAR, P. R. China
| | - Ye-Qing Huang
- Department of Biomedical Sciences, Research Group for Bioactive Products; City University of Hong Kong; Hong Kong SAR, P. R. China
| | - Hongyan Sun
- Key laboratory of Biochip Technology, Shenzhen Biotech and Health Centre; City University of Hong Kong; Shenzhen, P. R. China
- Department of Biology and Chemistry; City University of Hong Kong, Hong Kong, P. R.; China
| | - Hon-Yeung Cheung
- Department of Biomedical Sciences, Research Group for Bioactive Products; City University of Hong Kong; Hong Kong SAR, P. R. China
- Key laboratory of Biochip Technology, Shenzhen Biotech and Health Centre; City University of Hong Kong; Shenzhen, P. R. China
| |
Collapse
|
10
|
Liu JX, Zhang YW, Yuan F, Chen HX, Zhang XX. Differential detection of Rhizoma coptidis by capillary electrophoresis electrospray ionization mass spectrometry with a nanospray interface. Electrophoresis 2014; 35:3258-63. [PMID: 25143257 DOI: 10.1002/elps.201400334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
Abstract
A lab prototype CE-nanospray-MS platform with a high sensitivity porous sprayer was successfully applied in differential identification of Rhizoma coptidis in this paper. To obtain a stable and reliable nanospray, detailed optimizations about emitter geometry, buffer composition, emitter position, and spray voltage, as well as emitter cleanliness were discussed. Results showed that the reproducibility and sensitivity for separations of alkaloid standards were satisfactory using CE-nanospray-MS, which were also compared to ultra-HPLC (UHPLC)-MS. Their signal responds were at the same order of magnitude (intensities: 0.8 - 1.5 × 10(8) vs. 3.8 - 6.2 × 10(8) ), even though a 2 nL injection for CE was 2500-fold lower than UHPLC (5 μL injection). The absolute LOD results of CE-MS showed a remarkable superiority (18-24 fg), equal to 1000-fold lower than that of UHPLC-MS. Principal component analysis (PCA) of adulterated R. coptidis showed that this protocol had the ability to profile and qualify complex herb medicines, which also created a great potential for evaluation and qualification of rare and valuable Chinese medicines in future.
Collapse
Affiliation(s)
- Jing-Xin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry, Peking University, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
11
|
Zhao J, Hu DJ, Lao K, Yang ZM, Li SP. Advance of CE and CEC in phytochemical analysis (2012–2013). Electrophoresis 2014; 35:205-24. [PMID: 24114928 DOI: 10.1002/elps.201300321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
This article presents an overview of the advance of CE and CEC in phytochemical analysis, based on the literature not mentioned in our previous review papers [Chen, X. J., Zhao, J., Wang, Y. T., Huang, L. Q., Li, S. P., Electrophoresis 2012, 33, 168–179], mainly covering the years 2012–2013. In this article, attention is paid to online preconcentration, rapid separation, and sensitive detection. Selected examples illustrate the applicability of CE and CEC in biomedical, pharmaceutical, environmental, and food analysis. Finally, some general conclusions and future perspectives are given.
Collapse
|
12
|
Tang S, Liu S, Guo Y, Liu X, Jiang S. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. J Chromatogr A 2014; 1357:147-57. [PMID: 24786657 DOI: 10.1016/j.chroma.2014.04.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.
Collapse
Affiliation(s)
- Sheng Tang
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xia Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shengxiang Jiang
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
13
|
Tubaon RMS, Rabanes H, Haddad PR, Quirino JP. Capillary electrophoresis of natural products: 2011-2012. Electrophoresis 2014; 35:190-204. [DOI: 10.1002/elps.201300473] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Ria Marni S. Tubaon
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
| | - Heide Rabanes
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
- Chemistry Department; Xavier University, Ateneo de Cagayan; Cagayan de Oro City Philippines
- Department of Chemistry; School of Science and Engineering; Loyola Schools; Ateneo de Manila University; Quezon City Philippines
| | - Paul R. Haddad
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
14
|
Heng MY, Tan SN, Yong JWH, Ong ES. Emerging green technologies for the chemical standardization of botanicals and herbal preparations. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.03.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Zhao J, Deng J, Chen Y, Li S. Advanced phytochemical analysis of herbal tea in China. J Chromatogr A 2013; 1313:2-23. [DOI: 10.1016/j.chroma.2013.07.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
|
16
|
Cheng J, Chen X, Cai Y, He Y, Chen Z, Lin Z, Zhang L. Preparation and evaluation of a hydrophilic poly(2-hydroxyethyl methacrylate-co-N,N'-methylene bisacrylamide) monolithic column for pressurized capillary electrochromatography. Electrophoresis 2013; 34:1189-96. [PMID: 23404784 DOI: 10.1002/elps.201200523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 11/05/2022]
Abstract
A polar polymethacrylate-based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate and a polar cross-linker N,N'-methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high-column efficiencies with 62,000-126,000 theoretical plates/m and the RSDs of column-to-column (n = 9), run-to-run (n = 5), and day-to-day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959-0.9970 and linear ranges of 1.0-200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0-108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure-assisted CEC applications.
Collapse
Affiliation(s)
- Jintian Cheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Lao KM, Han DQ, Chen XJ, Zhao J, Wang TJ, Li SP. Simultaneous determination of seven hydrophilic bioactive compounds in water extract of Polygonum multiflorum using pressurized liquid extraction and short-end injection micellar electrokinetic chromatography. Chem Cent J 2013; 7:45. [PMID: 23452380 PMCID: PMC3599285 DOI: 10.1186/1752-153x-7-45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022] Open
Abstract
Background Polygoni Multiflori Radix, He-Shou-Wu in Chinese, is a widely used traditional Chinese medicine. Clinically, water decoction is the major application form of He-Shou-Wu. Therefore, simultaneous determination of bioactive compounds in water extract is very important for its quality control. Results A pressurized liquid extraction and short-end injection micellar electrokinetic chromatography (MEKC) were first developed for simultaneous determination of seven hydrophilic bioactive compounds in water extract of He-Shou-Wu. The influence of parameters, such as pH, concentration of phosphate, SDS and HP-β-CD, capillary temperature and applied voltage, on the analysis were carefully investigated. Optimum separation was obtained within 14 min by using 50 mM phosphate buffer containing 90 mM SDS and 2% (m/v) HP-β-CD (pH 2.5) at 15 kV and 20°C. All calibration curves showed good linearity (R2>0.9978) within test ranges. The overall LOD and LOQ were lower than 2.0 μg/mL and 5.5 μg/mL, respectively. The RSDs for intra- and inter-day of seven analytes were less than 3.2% and 4.6%, and the recoveries were 97.0%-104.2%. Conclusion The validated method was successfully applied to the analysis of He-Shou-Wu samples, which is helpful for its quality control.
Collapse
Affiliation(s)
- Ka-Meng Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | | | | | | | | | | |
Collapse
|
18
|
Gottardo R, Bertaso A, Pascali J, Sorio D, Musile G, Trapani E, Seri C, Serpelloni G, Tagliaro F. Micellar electrokinetic chromatography: a new simple tool for the analysis of synthetic cannabinoids in herbal blends and for the rapid estimation of their logP values. J Chromatogr A 2012; 1267:198-205. [PMID: 23022243 DOI: 10.1016/j.chroma.2012.08.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
For the first time a capillary separation based on micellar electrokinetic chromatography (MEKC) with diode array detection (DAD) was developed and validated for the rapid determination of synthetic cannabinoids in herbal blends. Separations were carried out on a 30 μm(ID) × 40 cm uncoated fused silica capillaries. The optimized buffer electrolyte was composed of 25 mM sodium tetraborate pH 8.0, 30 mM SDS and n-propanol 20% (v/v). Separations were performed at 30 kV. Sample injection conditions were 0.5 psi, 10s. Diazepam and JWH-015 were used as internal standards. The determination of the analytes was based on the UV signal recorded at 220 nm, corresponding to the maximum wavelength of absorbance of the molecules, whereas peak identification and purity check were also performed on the basis of the acquisition of UV spectra between 200 and 400 nm wavelengths. Under the described conditions, the separation of the compounds was achieved in 25 min without any significant interference from the matrix. Linearity was assessed within a concentration range from 5 to 100 μg/mL. The intra-day and inter-day imprecision values were below 2.45% for relative migration times and below 10.75% for relative peak areas. The present method was successfully applied to the direct determination of synthetic cannabinoids in 15 different herbal blend samples requiring only sample dilution. In addition, the developed MEKC separation was also applied to estimate the octanol/water partition coefficients (logP) of these new and poorly known molecules.
Collapse
Affiliation(s)
- Rossella Gottardo
- Department of Public Health and Community Medicine, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|