1
|
Höchsmann A, Dhellemmes L, Leclercq L, Cottet H, Neusüß C. Charge variant analysis of monoclonal antibodies by CZE-MS using a successive multiple ionic-polymer layer coating based on diethylaminoethyl-dextran. Electrophoresis 2024. [PMID: 39287066 DOI: 10.1002/elps.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization-mass spectrometry (ESI-MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE-ESI-MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic-polymer layer coating was developed based on diethylaminoethyl-dextran-poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C-terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE-MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.
Collapse
Affiliation(s)
- Alisa Höchsmann
- Faculty of Chemistry, Aalen University, Aalen, Germany
- Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
2
|
Lakis R, Sauvage FL, Pinault E, Marquet P, Saint-Marcoux F, El Balkhi S. Absolute Quantification of Human Serum Albumin Isoforms by Internal Calibration Based on a Top-Down LC-MS Approach. Anal Chem 2024; 96:746-755. [PMID: 38166371 DOI: 10.1021/acs.analchem.3c03933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Well-characterized biomarkers using reliable quantitative methods are essential for the management of various pathologies such as diabetes, kidney, and liver diseases. Human serum albumin (HSA) isoforms are gaining interest as biomarkers of advanced liver pathologies. In view of the structural alterations observed for HSA, insights into its isoforms are required to establish them as reliable biomarkers. Therefore, a robust absolute quantification method seems necessary. In this study, we developed and validated a far more advanced top-down liquid chromatography-mass spectrometry (LC-MS) method for the absolute quantification of HSA isoforms, using myoglobin (Mb) as an internal standard for quantification and for mass recalibration. Two different quantification approaches were investigated based on peak integration from the deconvoluted spectrum and extracted ion chromatogram (XIC). The protein mixture human serum albumin/myoglobin eluted in well-shaped separated peaks. Mb allowed a systematic mass recalibration for every sample, resulting in extremely low mass deviations compared to conventional deconvolution-based methods. In total, eight HSA isoforms of interest were quantified. Specific-isoform calibration curves showing good linearity were obtained by using the deconvoluted peaks. Noticeably, the HSA ionization behavior appeared to be isoform-dependent, suggesting that the use of an enriched isoform solution as a calibration standard for absolute quantification studies of HSA isoforms is necessary. Good repeatability, reproducibility, and accuracy were observed, with better sensitivity for samples with low albumin concentrations compared to routine biochemical assays. With a relatively simple workflow, the application of this method for absolute quantification shows great potential, especially for HSA isoform studies in a clinical context, where a high-throughput method and sensitivity are needed.
Collapse
Affiliation(s)
- Roy Lakis
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - François-Ludovic Sauvage
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Emilie Pinault
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Pierre Marquet
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Franck Saint-Marcoux
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Souleiman El Balkhi
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| |
Collapse
|
3
|
Hamidli N, Pajaziti B, Andrási M, Nagy C, Gáspár A. Determination of human insulin and its six therapeutic analogues by capillary electrophoresis - mass spectrometry. J Chromatogr A 2022; 1678:463351. [PMID: 35905683 DOI: 10.1016/j.chroma.2022.463351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022]
Abstract
In this work, human insulin and its 6 analogues were separated and determined using CZE-MS. Three different capillaries (bare fused silica, successive multiple ionic-polymer layer (SMIL) and static linear polyacrylamide (LPA) coated) were compared based on their separation performances in their optimal operating conditions. Coated capillaries demonstrated slightly better separation of the components, although some components showed wide, distorted peaks. The highest plate number could be obtained in the SMIL capillary (192 000/m). For UV and ESI-MS detection relatively similar LOD values were obtained (0.3-1.2 mg/L and 1.0-3.4 mg/L, respectively). The application of MS detection provided useful structural information and unambiguous identification for insulins having similar or the same molecular mass. This work is considered to be important not only for the investigation of insulins but also for its potential contribution to the top-down analysis of proteins using CE-MS.
Collapse
Affiliation(s)
- Narmin Hamidli
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Blerta Pajaziti
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Melinda Andrási
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| |
Collapse
|
4
|
Camperi J, Pichon V, Delaunay N. Separation methods hyphenated to mass spectrometry for the characterization of the protein glycosylation at the intact level. J Pharm Biomed Anal 2019; 178:112921. [PMID: 31671335 DOI: 10.1016/j.jpba.2019.112921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins that affects their biological activity, solubility, and half-life. Therefore, its characterization is of great interest in proteomic, particularly from a diagnostic and therapeutic point of view. However, the number and type of glycosylation sites, the degree of site occupancy and the different possible structures of glycans can lead to a very large number of isoforms for a given protein, called glycoforms. The identification of these glycoforms constitutes an important analytical challenge. Indeed, to attempt to characterize all of them, it is necessary to develop efficient separation methods associated with a sensitive and informative detection mode, such as mass spectrometry (MS). Most analytical methods are based on bottom-up proteomics, which consists in the analysis of the protein at the glycopeptides level after its digestion. Even if this approach provides essential information, including the localization and composition of glycans on the protein, it is also characterized by a loss of information on macro-heterogeneity, i.e. the nature of the glycans present on a given glycoform. The analysis of glycoforms at the intact level can overcome this disadvantage. The aim of this review is to detail the state-of-the art of separation methods that can be easily hyphenated with MS for the characterization of protein glycosylation at the intact level. The different electrophoretic and chromatographic approaches are discussed in detail. The miniaturization of these separation methods is also discussed with their potential applications. While the first studies focused on the development and optimization of the separation step to achieve high resolution between isoforms, the recent ones are much more application-oriented, such as clinical diagnosis, quality control, and glycoprotein monitoring in formulations or biological samples.
Collapse
Affiliation(s)
- Julien Camperi
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI 8231 CNRS - ESPCI Paris, PSL University, Paris, France
| | - Valerie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI 8231 CNRS - ESPCI Paris, PSL University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI 8231 CNRS - ESPCI Paris, PSL University, Paris, France.
| |
Collapse
|
5
|
Leclercq L, Morvan M, Koch J, Neusüß C, Cottet H. Modulation of the electroosmotic mobility using polyelectrolyte multilayer coatings for protein analysis by capillary electrophoresis. Anal Chim Acta 2019; 1057:152-161. [DOI: 10.1016/j.aca.2019.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
|
6
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
7
|
Mikšík I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci 2018; 42:385-397. [PMID: 30238606 DOI: 10.1002/jssc.201800817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The review is focused on the latest developments in the analysis of proteins and peptides by capillary electrophoresis techniques coupled to mass spectrometry. First, the methodology and instrumentation are overviewed. In this section, recent progress in capillary electrophoresis with mass spectrometry interfaces and capillary electrophoresis with matrix-assisted laser desorption/ionization is mentioned, as well as separation tasks. The second part is devoted to applications-mainly bottom-up and top-down proteomics. It is obvious that capillary electrophoresis with mass spectrometry methods are well suited for peptide and protein analysis (proteomic research) and it is described how these techniques are complementary and not competitive with the often used liquid chromatography with mass spectrometry methods.
Collapse
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| |
Collapse
|
8
|
Gusenkov S, Stutz H. Top-down and bottom-up characterization of nitrated birch pollen allergen Bet v 1a with CZE hyphenated to an Orbitrap mass spectrometer. Electrophoresis 2018; 39:1190-1200. [PMID: 29389018 PMCID: PMC6175448 DOI: 10.1002/elps.201700413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Abstract
Tyrosine (Tyr) residues of the major pollen allergen of birch Betula verrucosa, Bet v 1a, were nitrated by peroxynitrite. This modification enhances the allergenicity. Modified tyrosines were identified by analyzing intact allergen variants in combination with top-down and bottom-up approaches. Therefore, a laboratory-built sheath-liquid assisted ESI interface was applied for hyphenation of CE to an Orbitrap mass spectrometer to localize individual nitration sites. The major focus was on identification of primary nitration sites. The top-down approach unambiguously identified Tyr 5 as the most prominent modification site. Fragments from the allergen core and the C-terminal part carried up to three potential nitration sites, respectively. Thus, a bottom-up approach with tryptic digest was used as a complementary strategy which allowed for the unambiguous localization of nitration sites within the respective peptides. Nitration propensity for individual Tyr residues was addressed by comparison of MS signals of nitrated peptides relative to all cognates of homolog primary sequence. Combined data identified surface exposed Tyr 5 and Tyr 66 as major nitration sites followed by less accessible Tyr 158 whereas Tyr 81, 83 and 150 possess a lower nitration tendency and are apparently modified in variants with higher nitration levels.
Collapse
Affiliation(s)
- Sergey Gusenkov
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Hanno Stutz
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
9
|
Francisco KJM, do Lago CL. Improving thermal control of capillary electrophoresis with mass spectrometry and capacitively coupled contactless conductivity detection by using 3D printed cartridges. Talanta 2018; 185:37-41. [PMID: 29759214 DOI: 10.1016/j.talanta.2018.03.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
A 3D-printed cartridge was developed to improve the interface between a capillary electrophoresis instrument and a mass spectrometer. The thermostated airflow from the CE was guided to the entrance of the electrospray source keeping as much as possible the silica capillary in a proper Joule-heating dissipation environment. Hollow 3D-printed walls made of ABS covered by a 0.2 mm thick copper foil on the inner side were used. The cartridge also allows including up to two capacitively coupled contactless conductivity detectors (C4Ds). Experiments about the separation of monoethyl carbonate (a thermally unstable species) shows that the peak area obtained with the original cartridge is only 21% of the value obtained with the 3D-printed cartridge, which demonstrates the improvement in heat dissipation.
Collapse
Affiliation(s)
- Kelliton José Mendonça Francisco
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP CEP 05508-000, Brazil.
| | - Claudimir Lucio do Lago
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP CEP 05508-000, Brazil.
| |
Collapse
|
10
|
Sánchez-Hernández L, Montealegre C, Kiessig S, Moritz B, Neusüß C. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry. Electrophoresis 2017; 38:1044-1052. [DOI: 10.1002/elps.201600464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023]
|
11
|
Neuberger S, Rafai A, Neusüß C. Screening of Small Intact Proteins by Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CE-ESI-MS). Methods Mol Biol 2016; 1466:43-56. [PMID: 27473480 DOI: 10.1007/978-1-4939-4014-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary electrophoresis (CE) has been shown to be a suitable separation technique for complex samples. Combined with electrospray ionization-mass spectrometry (ESI-MS), it is a powerful tool offering the opportunity of high selectivity and sensitivity combined with the possibility to identify and characterize intact proteins. In this protocol, we demonstrate a screening method for intact proteins based on capillary zone electrophoresis (CZE) separation coupled with online mass spectrometric detection. In order to avoid protein-wall interactions, a neutral coated capillary is used to create a universal method for proteins with both low and high electrophoretic mobilities. In addition, we show the successful validation and application of this screening method for a set of eight standard proteins and the glycoprotein erythropoietin.
Collapse
Affiliation(s)
- Sabine Neuberger
- Department of Chemistry, Aalen University, Beethovenstraβe 1, Aalen, D-73430, Germany
| | | | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraβe 1, Aalen, D-73430, Germany.
| |
Collapse
|
12
|
Bush DR, Zang L, Belov AM, Ivanov AR, Karger BL. High Resolution CZE-MS Quantitative Characterization of Intact Biopharmaceutical Proteins: Proteoforms of Interferon-β1. Anal Chem 2015; 88:1138-46. [DOI: 10.1021/acs.analchem.5b03218] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- David R. Bush
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Li Zang
- Analytical
Development Department, Biogen, Cambridge, Massachusetts 02142, United States
| | - Arseniy M. Belov
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Barry L. Karger
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 2015; 39:198-211. [DOI: 10.1002/jssc.201500973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
14
|
Bekri S, Leclercq L, Cottet H. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking. J Chromatogr A 2015; 1399:80-7. [DOI: 10.1016/j.chroma.2015.04.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
|
15
|
Pontillo C, Filip S, Borràs DM, Mullen W, Vlahou A, Mischak H. CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl 2015; 9:322-34. [DOI: 10.1002/prca.201400115] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/10/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Claudia Pontillo
- Department of R&D; Mosaiques Diagnostics GmbH; Hanover Germany
- Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Szymon Filip
- Charité-Universitätsmedizin Berlin; Berlin Germany
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Daniel M. Borràs
- Department of R&D; ServiceXS; Leiden The Netherlands
- Institut National de la Santé et de la Recherche Médicale (INSERM); Institute of Cardiovascular and Metabolic Disease; Toulouse France
- Université Toulouse III Paul-Sabatier; Toulouse France
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
- School of Biomedical and Healthcare Sciences; Plymouth University; Plymouth UK
| | - Harald Mischak
- Department of R&D; Mosaiques Diagnostics GmbH; Hanover Germany
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
16
|
Tamizi E, Jouyban A. The potential of the capillary electrophoresis techniques for quality control of biopharmaceuticals-A review. Electrophoresis 2015; 36:831-58. [DOI: 10.1002/elps.201400343] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Elnaz Tamizi
- Biotechnology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Abolghasem Jouyban
- Pharmacy Faculty and Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
17
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Modelling the electrophoretic migration behaviour of peptides and glycopeptides from glycoprotein digests in capillary electrophoresis-mass spectrometry. Anal Chim Acta 2014; 854:169-77. [PMID: 25479881 DOI: 10.1016/j.aca.2014.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
In this study, the classical semiempirical relationships between the electrophoretic mobility and the charge-to-mass ratio (me vs. q/M(α)) were used to model the migration behaviour of peptides and glycopeptides originated from the digestion of recombinant human erythropoietin (rhEPO), a biologically and therapeutically relevant glycoprotein. The Stoke's law (α=1/3), the classical polymer model (α=1/2) and the Offord's surface law (α=2/3) were evaluated to predict migration of peptides and glycopeptides, with and without sialic acids (SiA), in rhEPO digested with trypsin and trypsin-neuraminidase. The Stoke's law resulted in better correlations for the set of peptides used to evaluate the models, while glycopeptides fitted better with the classical polymer model. Once predicted migration times with both models, it was easy to simulate their separation electropherogram. Results were later validated predicting migration and simulating separation of a different set of rhEPO glycopeptides and also human transferrin (Tf) peptides and glycopeptides. The excellent agreement between the experimental and the simulated electropherograms with rhEPO and Tf digests confirmed the potential applicability of this simple strategy to predict, in general, the peptide-glycopeptide electrophoretic map of any digested glycoprotein.
Collapse
Affiliation(s)
- Albert Barroso
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Estela Giménez
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Fernando Benavente
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - José Barbosa
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
18
|
New insights in carbohydrate-deficient transferrin analysis with capillary electrophoresis–mass spectrometry. Forensic Sci Int 2014; 243:14-22. [DOI: 10.1016/j.forsciint.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 11/21/2022]
|
19
|
Creamer JS, Oborny NJ, Lunte SM. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:5427-5449. [PMID: 25126117 PMCID: PMC4128283 DOI: 10.1039/c4ay00447g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.
Collapse
Affiliation(s)
- Jessica S. Creamer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nathan J. Oborny
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
20
|
Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, Chen DDY. Simple Capillary Electrophoresis–Mass Spectrometry Method for Complex Glycan Analysis Using a Flow-Through Microvial Interface. Anal Chem 2014; 86:6479-86. [DOI: 10.1021/ac5010212] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roxana G. Jayo
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Petrus W. Lindenburg
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - Rob Haselberg
- Division
of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, VU University 1081 HV Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - Rawi Ramautar
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - David D. Y. Chen
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
21
|
do Lago CL, Vidal DTR, Francisco KJM, dos Santos VB. A simple approach to compensate the suction caused by the electrospray ionization source in capillary electrophoresis-mass spectrometry systems. Electrophoresis 2014; 35:2412-6. [DOI: 10.1002/elps.201300651] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Claudimir Lucio do Lago
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Denis Tadeu Rajh Vidal
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Vagner Bezerra dos Santos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
22
|
Robledo VR, Smyth WF. Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 2014; 35:2292-308. [DOI: 10.1002/elps.201300561] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Virginia Rodríguez Robledo
- Faculty of Pharmacy; Department of Analytical Chemistry and Food Technology; University of Castilla-La Mancha (UCLM); Albacete Spain
| | - William Franklin Smyth
- School of Pharmacy and Pharmaceutical Sciences; University of Ulster; Coleraine Northern Ireland UK
| |
Collapse
|
23
|
Rossetti DV, Martelli C, Longhi R, Iavarone F, Castagnola M, Desiderio C. Quantitative analysis of thymosin β4 in whole saliva by capillary electrophoresis–mass spectrometry using multiple ions monitoring (CE-MIM-MS.). Electrophoresis 2014; 34:2674-82. [PMID: 23857244 DOI: 10.1002/elps.201300165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 12/18/2022]
Abstract
Thymosin β4 (Tβ4) is a peptide present in almost any tissue and in extracellular media in mammals, having multiple amazing functions as wound healing, stimulation of angiogenesis, and suppression of inflammation. This study describes its determination in saliva through CE-MS using multiple ions monitoring scan mode by isolating the four most intense multicharged ions present in the MS spectra of the peptide. This scan modality, by reducing the baseline noise and interferences, increases the sensitivity and specificity in biological matrices. The CE-MS separation was optimized by studying different parameters influencing CE analysis, sample injection, and MS ionization, that is, the nebulizer gas flow, the sheath liquid, and BGE composition. The proposed technique can unambiguously identify in short time Tβ4 in saliva after a very fast and reduced sample pretreatment procedure. The method was validated for quantitation showing linearity of the response in the range 0.25 (lower limit of quantification) to 4 μM (average R2 0.996 ± 0.005) and intra- and interassay precision and accuracy at three different concentrations with RSD values in the range of 7–16%. It was successfully applied to the analysis of Tβ4 in whole saliva showing a variable peptide content from individual to individual (in the range of 0.3–1.4 μM) and in different days from the same individual. CE-MS in multiple ions monitoring scan mode provides a fast, selective, and economic method requiring only very few microliters of sample.
Collapse
|
24
|
Capillary electrophoresis-based assessment of nanobody affinity and purity. Anal Chim Acta 2014; 818:1-6. [DOI: 10.1016/j.aca.2014.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
|
25
|
Gusenkov S, Ackaert C, Stutz H. Separation and characterization of nitrated variants of the major birch pollen allergen by CZE-ESI-μTOF MS. Electrophoresis 2013; 34:2695-704. [PMID: 23857337 PMCID: PMC3816331 DOI: 10.1002/elps.201300151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/11/2022]
Abstract
A CZE-ESI-TOF MS method has been optimized for the separation and identification of nitrated variants of the major birch pollen allergen from Betula verrucosa, isoform 1a (Bet v 1a). In-house nitration of recombinant Bet v 1a was done by peroxynitrite. As a BGE, 10 mmol/L ammonium bicarbonate with pH 7.50 provided best resolution. Nebulizer gas pressure and sheath liquid flow rate of 0.4 bar and 6 μL/min, respectively, maintained CZE selectivity and constituted stable electrospray conditions. A sheath liquid composition of 75% v/v methanol with 0.1% v/v formic acid in ultrapure water resulted in highest signal intensities. Alternatively, methanol could be replaced by 50% v/v isopropanol. Two modified allergen products derived from reaction mixtures that contained different amounts of the nitration reagent were compared by the elaborated CZE-ESI-TOF MS method. Up to twelve different Bet v 1a variants with one- to sixfold nitration could be distinguished. Several allergen fractions of equivalent nitration grade were resolved. Their different migration times indicate site-specific nitration with concomitant differences in pI and maybe also in hydrodynamic radius. The method allows for a characterization of in-house nitrated allergen samples that are intended for testing the postulated enhanced allergenicity of nitrated Bet v 1a variants.
Collapse
Affiliation(s)
- Sergey Gusenkov
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
26
|
Gassner AL, Rudaz S, Schappler J. Static coatings for the analysis of intact monoclonal antibody drugs by capillary zone electrophoresis. Electrophoresis 2013; 34:2718-24. [DOI: 10.1002/elps.201300070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Anne-Laure Gassner
- School of Pharmaceutical Sciences; University of Geneva, University of Lausanne; Geneva; Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences; University of Geneva, University of Lausanne; Geneva; Switzerland
| | - Julie Schappler
- School of Pharmaceutical Sciences; University of Geneva, University of Lausanne; Geneva; Switzerland
| |
Collapse
|
27
|
Deeb SE, Wätzig H, El-Hady DA. Capillary electrophoresis to investigate biopharmaceuticals and pharmaceutically-relevant binding properties. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Medina-Casanellas S, Benavente F, Barbosa J, Sanz-Nebot V. Preparation and evaluation of an immunoaffinity sorbent with Fab′ antibody fragments for the analysis of opioid peptides by on-line immunoaffinity solid-phase extraction capillary electrophoresis–mass spectrometry. Anal Chim Acta 2013; 789:91-9. [DOI: 10.1016/j.aca.2013.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/24/2023]
|
29
|
Wang R, Wang X, Paulino J, Alquier L. Evaluation of charged aerosol detector for purity assessment of protein. J Chromatogr A 2013; 1283:116-21. [DOI: 10.1016/j.chroma.2013.01.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 02/08/2023]
|
30
|
Haselberg R, de Jong GJ, Somsen GW. Low-Flow Sheathless Capillary Electrophoresis–Mass Spectrometry for Sensitive Glycoform Profiling of Intact Pharmaceutical Proteins. Anal Chem 2013; 85:2289-96. [DOI: 10.1021/ac303158f] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rob Haselberg
- Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gerhardus J. de Jong
- Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Govert W. Somsen
- Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
31
|
Klepárník K. Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single-cell analysis. Electrophoresis 2012; 34:70-85. [DOI: 10.1002/elps.201200488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
32
|
Haselberg R, de Jong GJ, Somsen GW. CE-MS for the analysis of intact proteins 2010-2012. Electrophoresis 2012; 34:99-112. [DOI: 10.1002/elps.201200439] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Rob Haselberg
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| | | | - Govert W. Somsen
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| |
Collapse
|
33
|
Pioch M, Bunz SC, Neusüss C. Capillary electrophoresis/mass spectrometry relevant to pharmaceutical and biotechnological applications. Electrophoresis 2012; 33:1517-30. [PMID: 22736352 DOI: 10.1002/elps.201200030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advanced analytical techniques play a crucial role in the pharmaceutical and biotechnological field. In this context, capillary electrophoresis/mass spectrometry (CE/MS) has attracted attention due to efficient and selective separation in combination with powerful detection allowing identification and detailed characterization. Method developments and applications of CE/MS have been focused on questions not easily accessible by liquid chromatography/mass spectrometry (LC/MS) as the analysis of intact proteins, carbohydrates, and various small molecules, including peptides. Here, recent approaches and applications of CE/MS relevant to (bio)pharmaceuticals are reviewed and discussed to show actual developments and future prospects. Based on other reviews on related subjects covering large parts of previous works, the paper is focused on general ideas and contributions of the last 2 years; for the analysis of glycans, the period is extended back to 2006.
Collapse
Affiliation(s)
- Markus Pioch
- Chemistry Department, Aalen University, Aalen, Germany
| | | | | |
Collapse
|